Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Patlak J (1991) Molecular kinetics of voltage-dependent Na+ channels. Physiol Rev 71:1047-80 [PubMed]

References and models cited by this paper

References and models that cite this paper

Balbi P, Massobrio P, Hellgren Kotaleski J (2017) A single Markov-type kinetic model accounting for the macroscopic currents of all human voltage-gated sodium channel isoforms. PLoS Comput Biol 13:e1005737 [Journal] [PubMed]
   A single kinetic model for all human voltage-gated sodium channels (Balbi et al, 2017) [Model]
Baranauskas G, Martina M (2006) Sodium currents activate without a Hodgkin-and-Huxley-type delay in central mammalian neurons. J Neurosci 26:671-84 [Journal] [PubMed]
   Sodium currents activate without a delay (Baranauskas and Martina 2006) [Model]
Clay JR, Paydarfar D, Forger DB (2008) A simple modification of the Hodgkin and Huxley equations explains type 3 excitability in squid giant axons. J R Soc Interface 5:1421-8 [Journal] [PubMed]
   Model of Type 3 firing in neurons (Clay et al 2008) [Model]
Deister CA, Chan CS, Surmeier DJ, Wilson CJ (2009) Calcium-activated SK channels influence voltage-gated ion channels to determine the precision of firing in globus pallidus neurons. J Neurosci 29:8452-61 [Journal] [PubMed]
   Model of SK current`s influence on precision in Globus Pallidus Neurons (Deister et al. 2009) [Model]
Gurkiewicz M, Korngreen A (2007) A numerical approach to ion channel modelling using whole-cell voltage-clamp recordings and a genetic algorithm. PLoS Comput Biol 3:e169 [Journal] [PubMed]
   Ion channel modeling with whole cell and a genetic algorithm (Gurkiewicz and Korngreen 2007) [Model]
Gurkiewicz M, Korngreen A, Waxman SG, Lampert A (2011) Kinetic modeling of Nav1.7 provides insight into erythromelalgia-associated F1449V mutation. J Neurophysiol 105:1546-57 [Journal] [PubMed]
   HMM of Nav1.7 WT and F1449V (Gurkiewicz et al. 2011) [Model]
Hennings K, Arendt-Nielsen L, Andersen OK (2005) Breakdown of accommodation in nerve: a possible role for persistent sodium current. Theor Biol Med Model 2:16 [Journal] [PubMed]
   Breakdown of accmmodation in nerve: a possible role for INAp (Hennings et al 2005) [Model]
Kahlig KM, Misra SN, George AL (2006) Impaired inactivation gate stabilization predicts increased persistent current for an epilepsy-associated SCN1A mutation. J Neurosci 26:10958-66 [Journal] [PubMed]
Menon V, Spruston N, Kath WL (2009) A state-mutating genetic algorithm to design ion-channel models. Proc Natl Acad Sci U S A 106:16829-34 [Journal] [PubMed]
   Hippocampus CA1 pyramidal model with Na channel exhibiting slow inactivation (Menon et al. 2009) [Model]
Patel SP, Campbell DL (2005) Transient outward potassium current, 'Ito', phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms. J Physiol 569:7-39 [Journal] [PubMed]
Sangrey TD, Friesen WO, Levy WB (2004) Analysis of the optimal channel density of the squid giant axon using a reparameterized Hodgkin-Huxley model. J Neurophysiol 91:2541-50 [Journal] [PubMed]
Thomas EA, Petrou S (2013) Network-specific mechanisms may explain the paradoxical effects of carbamazepine and phenytoin. Epilepsia 54:1195-202 [Journal] [PubMed]
   State dependent drug binding to sodium channels in the dentate gyrus (Thomas & Petrou 2013) [Model]
Wang S, Bondarenko VE, Qu YJ, Bett GC, Morales MJ, Rasmusson RL, Strauss HC (2005) Time- and voltage-dependent components of Kv4.3 inactivation. Biophys J 89:3026-41 [Journal] [PubMed]
(13 refs)