Legends: | Link to a Model | Reference cited by multiple papers |
References and models cited by this paper | References and models that cite this paper | |||||
Cook EP, Johnston D (1997) Active dendrites reduce location-dependent variability of synaptic input trains. J Neurophysiol 78:2116-28 [Journal] [PubMed] Delord B, Baraduc P, Costalat R, Burnod Y, Guigon E (2000) A model study of cellular short-term memory produced by slowly inactivating potassium conductances. J Comput Neurosci 8:251-73 [PubMed] Koos T, Tepper JM, Wilson CJ (2004) Comparison of IPSCs evoked by spiny and fast-spiking neurons in the neostriatum. J Neurosci 24:7916-22 [Journal] [PubMed] Kotaleski JH, Plenz D, Blackwell KT (2006) Using potassium currents to solve signal-to-noise problems in inhibitory feedforward networks of the striatum. J Neurophysiol 95:331-41 [Journal] [PubMed]
London M, Meunier C, Segev I (1999) Signal transfer in passive dendrites with nonuniform membrane conductance. J Neurosci 19:8219-33 [PubMed] Migliore M (1996) Modeling the attenuation and failure of action potentials in the dendrites of hippocampal neurons. Biophys J 71:2394-403 [Journal] [PubMed]
Segev I, London M (2000) Untangling dendrites with quantitative models. Science 290:744-50 [PubMed] Segev I, Rall W (1998) Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations. Trends Neurosci 21:453-60 [PubMed] Szalisznyó K (2006) Role of hyperpolarization-activated conductances in the lateral superior olive: a modeling study. J Comput Neurosci 20:137-52 [Journal] [PubMed] |