Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Jagadeesh B, Wheat HS, Ferster D (1993) Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. Science 262:1901-4 [PubMed]

References and models cited by this paper

References and models that cite this paper

Buchs NJ, Senn W (2002) Spike-based synaptic plasticity and the emergence of direction selective simple cells: simulation results. J Comput Neurosci 13:167-86 [PubMed]
Cai D, DeAngelis GC, Freeman RD (1997) Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. J Neurophysiol 78:1045-61 [Journal] [PubMed]
Carlson BA, Kawasaki M (2006) Stimulus selectivity is enhanced by voltage-dependent conductances in combination-sensitive neurons. J Neurophysiol 96:3362-77 [Journal] [PubMed]
   Combination sensitivity and active conductances (Carlson and Kawasaki 2006) [Model]
García-Pérez MA (2004) A nonlinear model of the behavior of simple cells in visual cortex. J Comput Neurosci 17:289-325 [Journal] [PubMed]
Gruntman E, Romani S, Reiser MB (2018) Simple integration of fast excitation and offset, delayed inhibition computes directional selectivity in Drosophila. Nat Neurosci 21:250-257 [Journal] [PubMed]
   Drosophila T4 neuron (Gruntman et al 2018) [Model]
Murphy BK, Miller KD (2003) Multiplicative gain changes are induced by excitation or inhibition alone. J Neurosci 23:10040-51 [PubMed]
Senn W, Buchs NJ (2003) Spike-based synaptic plasticity and the emergence of direction selective simple cells: mathematical analysis. J Comput Neurosci 14:119-38 [PubMed]
Singh C, Levy WB (2017) A consensus layer V pyramidal neuron can sustain interpulse-interval coding. PLoS One 12:e0180839 [Journal] [PubMed]
   Stochastic layer V pyramidal neuron: interpulse interval coding and noise (Singh & Levy 2017) [Model]
Varela JA, Sen K, Gibson J, Fost J, Abbott LF, Nelson SB (1997) A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. J Neurosci 17:7926-40 [Journal] [PubMed]
   Short term plasticity of synapses onto V1 layer 2/3 pyramidal neuron (Varela et al 1997) [Model]
(9 refs)