Legends: | Link to a Model | Reference cited by multiple papers |
References and models cited by this paper | References and models that cite this paper | |||||||||||||||||||||||||
Bahmer A, Langner G (2010) Parameters for a model of an oscillating neuronal network in the cochlear nucleus defined by genetic algorithms. Biol Cybern 102:81-93 [Journal] [PubMed]
Bal R, Oertel D (2000) Hyperpolarization-activated, mixed-cation current (I(h)) in octopus cells of the mammalian cochlear nucleus. J Neurophysiol 84:806-17 [Journal] [PubMed]
Carney LH, Heinz MG, Evilsizer ME, Gilkey RH, Colburn HS (2002) Auditory Phase Opponency: A Temporal Model for Masked Detection at Low Frequencies Acta Acustica united with Acustica 88:334-347 [Journal]
Holmes WR, Huwe JA, Williams B, Rowe MH, Peterson EH (2017) Models of utricular bouton afferents: role of afferent-hair cell connectivity in determining spike train regularity. J Neurophysiol 117:1969-1986 [Journal] [PubMed]
Hong S, Ratté S, Prescott SA, De Schutter E (2012) Single neuron firing properties impact correlation-based population coding. J Neurosci 32:1413-28 [Journal] [PubMed]
Jin DZ, Ramazanoglu FM, Seung HS (2007) Intrinsic bursting enhances the robustness of a neural network model of sequence generation by avian brain area HVC. J Comput Neurosci 23:283-99 [Journal] [PubMed] Kalluri S, Delgutte B (2003) Mathematical models of cochlear nucleus onset neurons: II. model with dynamic spike-blocking state. J Comput Neurosci 14:91-110 [PubMed] Kalluri S, Delgutte B (2003) Mathematical models of cochlear nucleus onset neurons: I. Point neuron with many weak synaptic inputs. J Comput Neurosci 14:71-90 [PubMed] Kim DO, D'angelo WR (2000) Computational model for the bushy cell of the cochlear nucleus Neurocomputing Kuhlmann L, Burkitt AN, Paolini A, Clark GM (2002) Summation of spatiotemporal input patterns in leaky integrate-and-fire neurons: application to neurons in the cochlear nucleus receiving converging auditory nerve fiber input. J Comput Neurosci 12:55-73 [PubMed] Manis PB, Campagnola L (2018) A biophysical modelling platform of the cochlear nucleus and other auditory circuits: From channels to networks. Hear Res 360:76-91 [Journal] [PubMed]
Remme MWH, Rinzel J, Schreiber S (2018) Function and energy consumption constrain neuronal biophysics in a canonical computation: Coincidence detection. PLoS Comput Biol 14:e1006612 [Journal] [PubMed]
Rothman JS, Manis PB (2003) The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons. J Neurophysiol 89:3097-113 [Journal] [PubMed] Rothman JS, Manis PB (2003) Differential expression of three distinct potassium currents in the ventral cochlear nucleus. J Neurophysiol 89:3070-82 [Journal] [PubMed]
Rothman JS, Manis PB (2003) Kinetic analyses of three distinct potassium conductances in ventral cochlear nucleus neurons. J Neurophysiol 89:3083-96 [Journal] [PubMed]
Schmerl BA, McDonnell MD (2013) Channel noise induced stochastic facilitation in an auditory brainstem neuron model Physical Review E 88:052722 [Journal] [PubMed]
Spirou GA, Rager J, Manis PB (2005) Convergence of auditory-nerve fiber projections onto globular bushy cells. Neuroscience 136:843-63 [Journal] [PubMed] Svirskis G, Kotak V, Sanes DH, Rinzel J (2002) Enhancement of signal-to-noise ratio and phase locking for small inputs by a low-threshold outward current in auditory neurons. J Neurosci 22:11019-25 [PubMed] Wang LY, Gan L, Forsythe ID, Kaczmarek LK (1998) Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. J Physiol 509 ( Pt 1):183-94 [PubMed]
Zhang X, Carney LH (2005) Response properties of an integrate-and-fire model that receives subthreshold inputs. Neural Comput 17:2571-601 [Journal] [PubMed]
|