Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Liu G (2004) Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites. Nat Neurosci 7:373-9 [PubMed]

References and models cited by this paper

References and models that cite this paper

Cleland TA, Sethupathy P (2006) Non-topographical contrast enhancement in the olfactory bulb. BMC Neurosci 7:7 [Journal] [PubMed]
Deneve S (2008) Bayesian spiking neurons I: inference. Neural Comput 20:91-117 [Journal] [PubMed]
Du K, Wu YW, Lindroos R, Liu Y, Rózsa B, Katona G, Ding JB, Kotaleski JH (2017) Cell-type-specific inhibition of the dendritic plateau potential in striatal spiny projection neurons. Proc Natl Acad Sci U S A 114:E7612-E7621 [Journal] [PubMed]
   Specific inhibition of dendritic plateau potential in striatal projection neurons (Du et al 2017) [Model]
Galati DF, Hiester BG, Jones KR (2016) Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation. Front Cell Neurosci 10:209 [Journal] [PubMed]
   BDNF morphological contributions to AP enhancement (Galati et al. 2016) [Model]
Gidon A, Segev I (2012) Principles governing the operation of synaptic inhibition in dendrites. Neuron 75:330-41 [Journal] [PubMed]
   Principles governing the operation of synaptic inhibition in dendrites (Gidon & Segev 2012) [Model]
Groen MR, Paulsen O, Pérez-Garci E, Nevian T, Wortel J, Dekker MP, Mansvelder HD, van Ooyen A, Meredith RM (2014) Development of dendritic tonic GABAergic inhibition regulates excitability and plasticity in CA1 pyramidal neurons. J Neurophysiol 112:287-99 [Journal] [PubMed]
Hao J, Wang XD, Dan Y, Poo MM, Zhang XH (2009) An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons. Proc Natl Acad Sci U S A 106:21906-11 [Journal] [PubMed]
   Spatial summation of excitatory and inhibitory inputs in pyramidal neurons (Hao et al. 2010) [Model]
Hiratani N, Fukai T (2017) Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity. J Neurosci 37:12106-12122 [Journal] [PubMed]
   Heterosynaptic Spike-Timing-Dependent Plasticity (Hiratani & Fukai 2017) [Model]
Lim S, Goldman MS (2014) Balanced cortical microcircuitry for spatial working memory based on corrective feedback control. J Neurosci 34:6790-806 [Journal] [PubMed]
Migliore M, Ferrante M, Ascoli GA (2005) Signal propagation in oblique dendrites of CA1 pyramidal cells. J Neurophysiol 94:4145-55 [Journal] [PubMed]
   CA1 pyramidal neuron: signal propagation in oblique dendrites (Migliore et al 2005) [Model]
Morita K (2008) Possible role of dendritic compartmentalization in the spatial working memory circuit. J Neurosci 28:7699-724 [Journal] [PubMed]
   Working memory circuit with branched dendrites (Morita 2008) [Model]
Müllner FE, Wierenga CJ, Bonhoeffer T (2015) Precision of Inhibition: Dendritic Inhibition by Individual GABAergic Synapses on Hippocampal Pyramidal Cells Is Confined in Space and Time. Neuron 87:576-89 [Journal] [PubMed]
   CA1 pyramidal neuron: dendritic Ca2+ inhibition (Muellner et al. 2015) [Model]
Rabinowitch I, Segev I (2006) The interplay between homeostatic synaptic plasticity and functional dendritic compartments. J Neurophysiol 96:276-83 [Journal] [PubMed]
   Homeostatic synaptic plasticity (Rabinowitch and Segev 2006a,b) [Model]
Rabinowitch I, Segev I (2008) Two opposing plasticity mechanisms pulling a single synapse. Trends Neurosci 31:377-83 [Journal] [PubMed]
   Homeostatic synaptic plasticity (Rabinowitch and Segev 2006a,b) [Model]
Rubin DB, Cleland TA (2006) Dynamical mechanisms of odor processing in olfactory bulb mitral cells. J Neurophysiol 96:555-68 [Journal] [PubMed]
   Dynamical model of olfactory bulb mitral cell (Rubin, Cleland 2006) [Model]
(16 refs)