Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Markram H (2006) The blue brain project. Nat Rev Neurosci 7:153-60 [PubMed]

References and models cited by this paper

References and models that cite this paper

Abdellah M, Hernando J, Antille N, Eilemann S, Markram H, Schürmann F (2017) Reconstruction and visualization of large-scale volumetric models of neocortical circuits for physically-plausible in silico optical studies. BMC Bioinformatics 18:402 [Journal] [PubMed]
   The neocortical microcircuit collaboration portal (Markram et al. 2015) [Model]
Bahl A, Stemmler MB, Herz AV, Roth A (2012) Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data. J Neurosci Methods 210:22-34 [Journal] [PubMed]
   A set of reduced models of layer 5 pyramidal neurons (Bahl et al. 2012) [Model]
Beining M, Mongiat LA, Schwarzacher SW, Cuntz H, Jedlicka P (2017) T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells eLife [Journal]
   Mature and young adult-born dentate granule cell models (T2N interface) (Beining et al. 2017) [Model]
   GC model (Beining et al 2017) [Model]
Elias LA, Watanabe RN, Kohn AF (2014) Spinal mechanisms may provide a combination of intermittent and continuous control of human posture: predictions from a biologically based neuromusculoskeletal model. PLoS Comput Biol 10:e1003944 [Journal] [PubMed]
   Large-scale neuromusculoskeletal model of human upright standing (Elias et al 2014) [Model]
Ferrante M, Blackwell KT, Migliore M, Ascoli GA (2008) Computational models of neuronal biophysics and the characterization of potential neuropharmacological targets. Curr Med Chem 15:2456-71 [PubMed]
   Computational neuropharmacology of CA1 pyramidal neuron (Ferrante et al. 2008) [Model]
Forrest MD (2015) Simulation of alcohol action upon a detailed Purkinje neuron model and a simpler surrogate model that runs >400 times faster. BMC Neurosci 16:27 [Journal] [PubMed]
   Alcohol action in a detailed Purkinje neuron model and an efficient simplified model (Forrest 2015) [Model]
Gewaltig MO, Cannon R (2014) Current practice in software development for computational neuroscience and how to improve it. PLoS Comput Biol 10:e1003376 [Journal] [PubMed]
Giugliano M, Gambazzi L, Ballerini L, Prato M, Campidelli S (2012) Carbon nanotubes as electrical interfaces to neurons Nanotechnology for Biology and Medicine, Parpura V, Silva GA, ed. pp.187 [Journal]
   Carbon nanotubes as electrical interfaces to neurons (Giugliano et al. 2008) [Model]
Gleeson P, Steuber V, Silver RA (2007) neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron 54:219-35 [Journal] [PubMed]
Hay E, Schürmann F, Markram H, Segev I (2013) Preserving axosomatic spiking features despite diverse dendritic morphology. J Neurophysiol 109:2972-81 [Journal] [PubMed]
   Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013) [Model]
Hines M, Kumar S, Schürmann F (2011) Comparison of neuronal spike exchange methods on a Blue Gene/P supercomputer. Front Comput Neurosci 5:49 [Journal] [PubMed]
   Spike exchange methods for a Blue Gene/P supercomputer (Hines et al., 2011) [Model]
Hines ML, Eichner H, Schürmann F (2008) Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors. J Comput Neurosci 25:203-10 [Journal] [PubMed]
   Cell splitting in neural networks extends strong scaling (Hines et al. 2008) [Model]
Humphries MD, Wood R, Gurney K (2009) Dopamine-modulated dynamic cell assemblies generated by the GABAergic striatal microcircuit. Neural Netw 22:1174-88 [Journal] [PubMed]
   Striatal GABAergic microcircuit, dopamine-modulated cell assemblies (Humphries et al. 2009) [Model]
Humphries MD, Wood R, Gurney K (2010) Reconstructing the three-dimensional GABAergic microcircuit of the striatum. PLoS Comput Biol 6:e1001011 [Journal] [PubMed]
   Striatal GABAergic microcircuit, spatial scales of dynamics (Humphries et al, 2010) [Model]
Johansson C, Lansner A (2007) Imposing biological constraints onto an abstract neocortical attractor network model. Neural Comput 19:1871-96 [Journal] [PubMed]
Jolivet R, Kobayashi R, Rauch A, Naud R, Shinomoto S, Gerstner W (2008) A benchmark test for a quantitative assessment of simple neuron models. J Neurosci Methods 169:417-24 [Journal] [PubMed]
   Spike Response Model simulator (Jolivet et al. 2004, 2006, 2008) [Model]
Kozloski J, Wagner J (2011) An Ultrascalable Solution to Large-scale Neural Tissue Simulation. Front Neuroinform 5:15 [Journal] [PubMed]
Lepora NF, Overton PG, Gurney K (2012) Efficient fitting of conductance-based model neurons from somatic current clamp. J Comput Neurosci 32:1-24 [Journal] [PubMed]
   Parameter estimation for Hodgkin-Huxley based models of cortical neurons (Lepora et al. 2011) [Model]
Linaro D, Storace M, Giugliano M (2011) Accurate and fast simulation of channel noise in conductance-based model neurons by diffusion approximation. PLoS Comput Biol 7:e1001102 [Journal] [PubMed]
   Accurate and fast simulation of channel noise in conductance-based model neurons (Linaro et al 2011) [Model]
Marasco A, Limongiello A, Migliore M (2012) Fast and accurate low-dimensional reduction of biophysically detailed neuron models. Sci Rep 2:928 [Journal] [PubMed]
   Ca1 pyramidal neuron: reduction model (Marasco et al. 2012) [Model]
Matsubara T, Torikai H (2016) An Asynchronous Recurrent Network of Cellular Automaton-Based Neurons and Its Reproduction of Spiking Neural Network Activities. IEEE Trans Neural Netw Learn Syst 27:836-52 [Journal] [PubMed]
Mattioni M, Le Novère N (2013) Integration of biochemical and electrical signaling-multiscale model of the medium spiny neuron of the striatum. PLoS One 8:e66811 [Journal] [PubMed]
   Multiscale simulation of the striatal medium spiny neuron (Mattioni & Le Novere 2013) [Model]
Parekh R, Ascoli GA (2013) Neuronal morphology goes digital: a research hub for cellular and system neuroscience. Neuron 77:1017-38 [Journal] [PubMed]
   Neuronal morphology goes digital ... (Parekh & Ascoli 2013) [Model]
Richmond P, Buesing L, Giugliano M, Vasilaki E (2011) Democratic population decisions result in robust policy-gradient learning: a parametric study with GPU simulations. PLoS One 6:e18539 [Journal] [PubMed]
   Democratic population decisions result in robust policy-gradient learning (Richmond et al. 2011) [Model]
Singh N, Huyck C, Gandhi V, Jones A (2016) Neuron-Based Control Mechanisms for a Robotic Arm and Hand ICMRRS 2017: International Conference on Medical Robotics and Robotics for Surgery, Paris, France 3(2):660 [Journal]
   Neuron-based control mechanisms for a robotic arm and hand (Singh et al 2017) [Model]
Solbrå A, Bergersen AW, van den Brink J, Malthe-Sørenssen A, Einevoll GT, Halnes G (2018) A Kirchhoff-Nernst-Planck framework for modeling large scale extracellular electrodiffusion surrounding morphologically detailed neurons. PLoS Comput Biol 14:e1006510 [Journal] [PubMed]
   Modelling large scale electrodiffusion near morphologically detailed neurons (Solbra et al 2018) [Model]
(35 refs)