Citation Relationships

Legends: Link to a Model Reference cited by multiple papers

Simon JZ, Depireux DA, Klein DJ, Fritz JB, Shamma SA (2007) Temporal symmetry in primary auditory cortex: implications for cortical connectivity. Neural Comput 19:583-638 [PubMed]

References and models cited by this paper

References and models that cite this paper

Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2:284-99 [PubMed]
Aertsen AM, Johannesma PI (1981) A comparison of the spectro-temporal sensitivity of auditory neurons to tonal and natural stimuli. Biol Cybern 42:145-56 [PubMed]
Aertsen AM, Johannesma PI (1981) The spectro-temporal receptive field. A functional characteristic of auditory neurons. Biol Cybern 42:133-43 [PubMed]
Barlow HB, Levick WR (1965) The mechanism of directionally selective units in rabbit's retina. J Physiol 178:477-504 [PubMed]
Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci 12:297-306 [PubMed]
Bussgang JJ (1952) Crosscorrelation functions of amplitude distorted gaussian signals Mit Res Lab Elec Tech Rep 216:1-14
Chance FS, Nelson SB, Abbott LF (1998) Synaptic depression and the temporal response characteristics of V1 cells. J Neurosci 18:4785-99 [PubMed]
Cohen L (1995) Time-Frequency Analysis
Creutzfeldt O, Hellweg FC, Schreiner C (1980) Thalamocortical transformation of responses to complex auditory stimuli. Exp Brain Res 39:87-104 [PubMed]
De Valois RL, Cottaris NP, Mahon LE, Elfar SD, Wilson JA (2000) Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity. Vision Res 40:3685-702 [PubMed]
deCharms RC, Blake DT, Merzenich MM (1998) Optimizing sound features for cortical neurons. Science 280:1439-43 [PubMed]
Depireux D, Simon J, Shamma S (1998) Measuring the dynamics of neural responses in primary auditory cortex Comments Theoretical Biol 5:89-118
Depireux DA, Simon JZ, Klein DJ, Shamma SA (2001) Spectro-temporal response field characterization with dynamic ripples in ferret primary auditory cortex. J Neurophysiol 85:1220-34 [Journal] [PubMed]
DiCarlo JJ, Johnson KO (1999) Velocity invariance of receptive field structure in somatosensory cortical area 3b of the alert monkey. J Neurosci 19:401-19 [PubMed]
DiCarlo JJ, Johnson KO (2000) Spatial and temporal structure of receptive fields in primate somatosensory area 3b: effects of stimulus scanning direction and orientation. J Neurosci 20:495-510 [PubMed]
DiCarlo JJ, Johnson KO (2002) Receptive field structure in cortical area 3b of the alert monkey. Behav Brain Res 135:167-78 [PubMed]
Eggermont JJ (1993) Wiener and Volterra analyses applied to the auditory system. Hear Res 66:177-201 [PubMed]
Eggermont JJ, Aertsen AM, Hermes DJ, Johannesma PI (1981) Spectro-temporal characterization of auditory neurons: redundant or necessary. Hear Res 5:109-21 [PubMed]
Elhilali M, Fritz JB, Klein DJ, Simon JZ, Shamma SA (2004) Dynamics of precise spike timing in primary auditory cortex. J Neurosci 24:1159-72 [Journal] [PubMed]
Emerson RC, Gerstein GL (1977) Simple striate neurons in the cat. II. Mechanisms underlying directional asymmetry and directional selectivity. J Neurophysiol 40:136-55 [Journal] [PubMed]
Epping WJ, Eggermont JJ (1985) Single-unit characteristics in the auditory midbrain of the immobilized grassfrog. Hear Res 18:223-43 [PubMed]
Escabi MA, Schreiner CE (2002) Nonlinear spectrotemporal sound analysis by neurons in the auditory midbrain. J Neurosci 22:4114-31 [Journal] [PubMed]
Evans EF (1979) Single-unit studies of mammalian cochlear nerve Auditory investigations: the scientific and technological basis, Beagley HA, ed. pp.324
Fritz J, Shamma S, Elhilali M, Klein D (2003) Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nat Neurosci 6:1216-23 [Journal] [PubMed]
Ghazanfar AA, Nicolelis MA (1999) Spatiotemporal properties of layer V neurons of the rat primary somatosensory cortex. Cereb Cortex 9:348-61
Ghazanfar AA, Nicolelis MA (2001) Feature article: the structure and function of dynamic cortical and thalamic receptive fields. Cereb Cortex 11:183-93 [PubMed]
Green DM (1986) Frequency and the detection of spectral shape change Auditory frequency selectivity, Moore CJ:Patterson RD, ed. pp.351
Hansen P (1998) Rank-deficient and discrete ill-posed problems SIAM monographs on mathematical modeling
Heeger DJ (1993) Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. J Neurophysiol 70:1885-98 [Journal] [PubMed]
Hermes DJ, Aertsen AM, Johannesma PI, Eggermont JJ (1981) Spectro-temporal characteristics of single units in the auditory midbrain of the lightly anaesthetised grass frog (Rana temporaria L) investigated with noise stimuli. Hear Res 5:147-78 [PubMed]
Hillier D (1991) Auditory processing of sinusoidal spectral envelopes
Humphrey AL, Weller RE (1988) Functionally distinct groups of X-cells in the lateral geniculate nucleus of the cat. J Comp Neurol 268:429-47 [Journal] [PubMed]
Johannesma PI, Eggermont JJ (1983) Receptive fields of auditory neurons inthe frogs midbrain as functional elements for acoustic communications Advances in vertebrate neuroethology, Ewet JP:Capranica D:Ingle North Atlantic Treaty Organization, ed. pp.901
Klein DJ, Depireux DA, Simon JZ, Shamma SA (2000) Robust spectrotemporal reverse correlation for the auditory system: optimizing stimulus design. J Comput Neurosci 9:85-111 [Journal] [PubMed]
Klein DJ, Simon JZ, Depireux DA, Shamma SA (2006) Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex. J Comput Neurosci 20:111-36 [Journal] [PubMed]
Kowalski N, Depireux DA, Shamma SA (1996) Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. J Neurophysiol 76:3503-23 [Journal] [PubMed]
Kowalski N, Versnel H, Shamma SA (1995) Comparison of responses in the anterior and primary auditory fields of the ferret cortex. J Neurophysiol 73:1513-23 [Journal] [PubMed]
Kvale MN, Schreiner CE (2004) Short-term adaptation of auditory receptive fields to dynamic stimuli. J Neurophysiol 91:604-12 [Journal] [PubMed]
Linden JF, Liu RC, Sahani M, Schreiner CE, Merzenich MM (2003) Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex. J Neurophysiol 90:2660-75 [Journal] [PubMed]
Linden JF, Schreiner CE (2003) Columnar transformations in auditory cortex? A comparison to visual and somatosensory cortices. Cereb Cortex 13:83-9 [PubMed]
Machens CK, Wehr MS, Zador AM (2004) Linearity of cortical receptive fields measured with natural sounds. J Neurosci 24:1089-100 [Journal] [PubMed]
Maex R, Orban GA (1996) Model circuit of spiking neurons generating directional selectivity in simple cells. J Neurophysiol 75:1515-45 [Journal] [PubMed]
Mastronarde DN (1987) Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. J Neurophysiol 57:381-413 [Journal] [PubMed]
Mastronarde DN (1987) Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptive-field properties and classification of cells. J Neurophysiol 57:357-80 [Journal] [PubMed]
McLean J, Palmer LA (2007) Organization of simple cell responses in the three-dimensional (3-D) frequency domain. Vis Neurosci 11:295-306
Miller LM, Escabí MA, Read HL, Schreiner CE (2002) Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. J Neurophysiol 87:516-27 [Journal] [PubMed]
Miller LM, Escabí MA, Schreiner CE (2001) Feature selectivity and interneuronal cooperation in the thalamocortical system. J Neurosci 21:8136-44 [PubMed]
Miller LM, Schreiner CE (2000) Stimulus-based state control in the thalamocortical system. J Neurosci 20:7011-6 [PubMed]
Moller AR (1977) Frequency selectivity of single auditory-nerve fibers in response to broadband noise stimuli. J Acoust Soc Am 62:135-42 [PubMed]
Nykamp DQ, Ringach DL (2002) Full identification of a linear-nonlinear system via cross-correlation analysis. J Vis 2:1-11 [Journal] [PubMed]
Papoulis A (1987) The Fourier integral and its applications
Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical Recipes The Art Of Scientic Computing, University CAMBRIDGEPRESS, ed.
Qin L, Chimoto S, Sakai M, Sato Y (2004) Spectral-shape preference of primary auditory cortex neurons in awake cats. Brain Res 1024:167-75 [Journal] [PubMed]
Qiu A, Schreiner CE, Escabí MA (2003) Gabor analysis of auditory midbrain receptive fields: spectro-temporal and binaural composition. J Neurophysiol 90:456-76 [Journal] [PubMed]
Read HL, Winer JA, Schreiner CE (2001) Modular organization of intrinsic connections associated with spectral tuning in cat auditory cortex. Proc Natl Acad Sci U S A 98:8042-7 [Journal] [PubMed]
Read HL, Winer JA, Schreiner CE (2002) Functional architecture of auditory cortex. Curr Opin Neurobiol 12:433-40 [PubMed]
Reid RC, Victor JD, Shapley RM (2003) The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Vis Neurosci 14:1015-27
Richmond BJ, Optican LM, Spitzer H (1990) Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations. J Neurophysiol 64:351-69 [Journal] [PubMed]
Rouiller E, de Ribaupierre Y, Toros-Morel A, de Ribaupierre F (1981) Neural coding of repetitive clicks in the medial geniculate body of cat. Hear Res 5:81-100 [PubMed]
Rugh WJ (1981) Nonlinear system theory: The Volterra-Wiener approach
Rutkowski RG, Shackleton TM, Schnupp JW, Wallace MN, Palmer AR (2002) Spectrotemporal receptive field properties of single units in the primary, dorsocaudal and ventrorostral auditory cortex of the guinea pig. Audiol Neurootol 7:214-27 [Journal] [PubMed]
Sahani M, Linden JF (2003) How linear are auditory cortical responses? Advances in neural information processing systems :109-116
Saul AB, Humphrey AL (1990) Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. J Neurophysiol 64:206-24 [Journal] [PubMed]
Schäfer M, Rübsamen R, Dörrscheidt GJ, Knipschild M (1992) Setting complex tasks to single units in the avian auditory forebrain. II. Do we really need natural stimuli to describe neuronal response characteristics? Hear Res 57:231-44 [PubMed]
Schnupp JW, Mrsic-Flogel TD, King AJ (2001) Linear processing of spatial cues in primary auditory cortex. Nature 414:200-4 [Journal] [PubMed]
Schreiner C, Calhoun B (1995) Spectral envelope coding in cat primary auditory cortex: Properties of ripple transfer functions J Auditory Neurosci 1:39-61
Sen K, Theunissen FE, Doupe AJ (2001) Feature analysis of natural sounds in the songbird auditory forebrain. J Neurophysiol 86:1445-58 [Journal] [PubMed]
Shamma S, Versnel H, Kowalski N (1995) Ripple analysis in the ferret primary auditory cortex. I. Response characteristics of single units to sinusoidally ripples spectra J Auditory Neurosci 1:233-254
Shamma SA, Fleshman JW, Wiser PR, Versnel H (1993) Organization of response areas in ferret primary auditory cortex. J Neurophysiol 69:367-83 [Journal] [PubMed]
Shamma SA, Versnel H (1995) Ripple analysis in ferret primary auditory cortex: II. Prediction of unit responses to arbitrary spectral profiles Aud Neurosci 1:255-270
Smith AT, Snowden RJ, Milne AB (1994) Is global motion really based on spatial integration of local motion signals? Vision Res 34:2425-30 [PubMed]
Smith PH, Populin LC (2001) Fundamental differences between the thalamocortical recipient layers of the cat auditory and visual cortices. J Comp Neurol 436:508-19 [PubMed]
Smolders JW, Aertsen AM, Johannesma PI (1979) Neural representation of the acoustic biotope. A comparison of the response of auditory neurons to tonal and natural stimuli in the cat. Biol Cybern 35:11-20 [PubMed]
Stewart G (1991) Purturbation theory for the singular value decomposition SVD and Signal Processing II, Vaccaro R, ed. pp.99
Stewart G (1993) Determining rank in the presence of error Linear Algebra for Large Scale and Real-Time Applications, Moonen MS:Gloub GH:DeMoor BLR, ed. pp.275
Stewart GW (1990) Stochastic Perturbation theory SIAM Rev 32:579-610
Suarez H, Koch C, Douglas R (1995) Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit. J Neurosci 15:6700-19 [PubMed]
Summers V, Leek MR (1994) The internal representation of spectral contrast in hearing-impaired listeners. J Acoust Soc Am 95:3518-28 [PubMed]
Sutter E (1992) A deterministic approach to nonlinear systems analysis Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks, Pinter R:Nabet B, ed. pp.171
Theunissen FE, Sen K, Doupe AJ (2000) Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. J Neurosci 20:2315-31 [PubMed]
Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6:391-8 [Journal] [PubMed]
Valentine PA, Eggermont JJ (2004) Stimulus dependence of spectro-temporal receptive fields in cat primary auditory cortex. Hear Res 196:119-33 [Journal] [PubMed]
van Dijk P, Wit HP, Segenhout JM, Tubis A (1994) Wiener kernel analysis of inner ear function in the American bullfrog. J Acoust Soc Am 95:904-19 [PubMed]
Victor JD (1992) Nonlinear system analysis in vision: Overview of kernel methods Nonlinear Vision, Pinter RB:Nabet B, ed. pp.1
Watson AB, Ahumada AJ (1985) Model of human visual-motion sensing. J Opt Soc Am A 2:322-41 [PubMed]
Wickesberg RE, Geisler CD (1984) Artifacts in Wiener kernels estimated using Gaussian white noise. IEEE Trans Biomed Eng 31:454-61 [Journal] [PubMed]
Yeshurun Y, Wollberg Z, Dyn N (1987) Identification of MGB cells by Volterra kernels. II. Towards a functional classification of cells Biol Cybern 56:203-208
Yeshurun Y, Wollberg Z, Dyn N, Allon N (1985) Prediction of responses to species specific vocalizations. Biol Cybern 51:383-90
Klein DJ, Simon JZ, Depireux DA, Shamma SA (2006) Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex. J Comput Neurosci 20:111-36 [Journal] [PubMed]
(90 refs)