Legends: | Link to a Model | Reference cited by multiple papers |
References and models cited by this paper | References and models that cite this paper | |||||||||||||||||||||||
Azouz R, Gray CM (2008) Stimulus-selective spiking is driven by the relative timing of synchronous excitation and disinhibition in cat striate neurons in vivo. Eur J Neurosci 28:1286-300 [Journal] [PubMed] Durstewitz D, Gabriel T (2007) Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons. Cereb Cortex 17:894-908 [Journal] [PubMed]
Galan RF, Weidert M, Menzel R, Herz AVM, Galizia CG (2005) Sensory Memory for Odors Is Encoded in Spontaneous Correlated Activity Between Olfactory Glomeruli Neural Comput 18:10-25 Hamaguchi K, Okada M, Aihara K (2007) Variable timescales of repeated spike patterns in synfire chain with Mexican-hat connectivity. Neural Comput 19:2468-91 [Journal] [PubMed] Hamaguchi K, Okada M, Yamana M, Aihara K (2005) Correlated firing in a feedforward network with Mexican-hat-type connectivity. Neural Comput 17:2034-59 [Journal] [PubMed] Hosaka R, Araki O, Ikeguchi T (2008) STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns. Neural Comput 20:415-35 [Journal] [PubMed] Izhikevich EM (2006) Polychronization: computation with spikes. Neural Comput 18:245-82 [Journal] [PubMed]
Jolivet R, Gerstner W (2004) Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival. J Physiol Paris 98:442-51 [Journal] [PubMed] Jolivet R, Kobayashi R, Rauch A, Naud R, Shinomoto S, Gerstner W (2008) A benchmark test for a quantitative assessment of simple neuron models. J Neurosci Methods 169:417-24 [Journal] [PubMed]
Jolivet R, Rauch A, Lüscher HR, Gerstner W (2006) Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J Comput Neurosci 21:35-49 [Journal] [PubMed]
Jun JK, Jin DZ (2007) Development of neural circuitry for precise temporal sequences through spontaneous activity, axon remodeling, and synaptic plasticity. PLoS One 2:e723 [Journal] [PubMed]
Kaltenbrunner A, Gómez V, López V (2007) Phase transition and hysteresis in an ensemble of stochastic spiking neurons. Neural Comput 19:3011-50 [Journal] [PubMed] Kobayashi R, Tsubo Y, Shinomoto S (2009) Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front Comput Neurosci 3:9 [Journal] [PubMed]
Maes A, Barahona M, Clopath C (2020) Learning spatiotemporal signals using a recurrent spiking network that discretizes time. PLoS Comput Biol 16:e1007606 [Journal] [PubMed]
Marre O, Yger P, Davison AP, Frégnac Y (2009) Reliable recall of spontaneous activity patterns in cortical networks. J Neurosci 29:14596-606 [Journal] [PubMed] Okamoto H, Isomura Y, Takada M, Fukai T (2007) Temporal integration by stochastic recurrent network dynamics with bimodal neurons. J Neurophysiol 97:3859-67 [Journal] [PubMed]
Schmitt LI, Wimmer RD, Nakajima M, Happ M, Mofakham S, Halassa MM (2017) Thalamic amplification of cortical connectivity sustains attentional control. Nature 545:219-223 [Journal] [PubMed] Schneider G, Havenith MN, Nikolic D (2006) Spatiotemporal structure in large neuronal networks detected from cross-correlation. Neural Comput 18:2387-413 [Journal] [PubMed] Spreizer S, Aertsen A, Kumar A (2019) From space to time: Spatial inhomogeneities lead to the emergence of spatiotemporal sequences in spiking neuronal networks. PLoS Comput Biol 15:e1007432 [Journal] [PubMed]
Teramae JN, Fukai T (2007) Local cortical circuit model inferred from power-law distributed neuronal avalanches. J Comput Neurosci 22:301-12 [Journal] [PubMed] Tiesinga PH, Toups JV (2005) The possible role of spike patterns in cortical information processing. J Comput Neurosci 18:275-86 [Journal] [PubMed] Tripp B, Eliasmith C (2007) Neural populations can induce reliable postsynaptic currents without observable spike rate changes or precise spike timing. Cereb Cortex 17:1830-40 [Journal] [PubMed]
|