Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Johnson SW, Seutin V, North RA (1992) Burst firing in dopamine neurons induced by N-methyl-D-aspartate: role of electrogenic sodium pump. Science 258:665-7 [PubMed]

References and models cited by this paper

References and models that cite this paper

Canavier CC (1999) Sodium dynamics underlying burst firing and putative mechanisms for the regulation of the firing pattern in midbrain dopamine neurons: a computational approach. J Comput Neurosci 6:49-69 [PubMed]
   Midbrain dopamine neuron: firing patterns (Canavier 1999) [Model]
Canavier CC, Landry RS (2006) An increase in AMPA and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo. J Neurophysiol 96:2549-63 [Journal] [PubMed]
   Differential modulation of pattern and rate in a dopamine neuron model (Canavier and Landry 2006) [Model]
Huss M, Lansner A, Wallén P, El Manira A, Grillner S, Kotaleski JH (2007) Roles of ionic currents in lamprey CpG neurons: a modeling study. J Neurophysiol 97:2696-711 [Journal] [PubMed]
   Lamprey spinal CPG neuron (Huss et al. 2007) [Model]
Knowlton C, Kutterer S, Roeper J, Canavier CC (2018) Calcium dynamics control K-ATP channel-mediated bursting in substantia nigra dopamine neurons: a combined experimental and modeling study. J Neurophysiol 119:84-95 [Journal] [PubMed]
   Model for K-ATP mediated bursting in mSNc DA neurons (Knowlton et al 2018) [Model]
Komendantov AO, Komendantova OG, Johnson SW, Canavier CC (2004) A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. J Neurophysiol 91:346-57 [Journal] [PubMed]
   Regulation of the firing pattern in dopamine neurons (Komendantov et al 2004) [Model]
Kuznetsov AS, Kopell NJ, Wilson CJ (2006) Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron. J Neurophysiol 95:932-47 [Journal] [PubMed]
   Dopaminergic cell bursting model (Kuznetsov et al 2006) [Model]
Li YX, Bertram R, Rinzel J (1996) Modeling N-methyl-D-aspartate-induced bursting in dopamine neurons. Neuroscience 71:397-410 [PubMed]
   Bursting in dopamine neurons (Li YX et al 1996) [Model]
Migliore M, Cannia C, Canavier CC (2008) A modeling study suggesting a possible pharmacological target to mitigate the effects of ethanol on reward-related dopaminergic signaling. J Neurophysiol 99:2703-7 [Journal] [PubMed]
   Nigral dopaminergic neurons: effects of ethanol on Ih (Migliore et al. 2008) [Model]
Phillips AJ, Robinson PA (2007) A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system. J Biol Rhythms 22:167-79 [Journal] [PubMed]
   Quantitative model of sleep-wake dynamics (Phillips & Robinson 2007) [Model]
Rubin JE, Hayes JA, Mendenhall JL, Del Negro CA (2009) Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations. Proc Natl Acad Sci U S A 106:2939-44 [Journal] [PubMed]
   Ca2+-activated I_CAN and synaptic depression promotes network-dependent oscil. (Rubin et al. 2009) [Model]
Yu N, Canavier CC (2015) A Mathematical Model of a Midbrain Dopamine Neuron Identifies Two Slow Variables Likely Responsible for Bursts Evoked by SK Channel Antagonists and Terminated by Depolarization Block. J Math Neurosci 5:5 [Journal] [PubMed]
   Phase plane reveals two slow variables in midbrain dopamine neuron bursts (Yu and Canavier, 2015) [Model]
(12 refs)