Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Izhikevich EM, Gally JA, Edelman GM (2004) Spike-timing dynamics of neuronal groups. Cereb Cortex 14:933-44 [PubMed]

References and models cited by this paper

References and models that cite this paper

Aviel Y, Horn D, Abeles M (2005) Memory capacity of balanced networks. Neural Comput 17:691-713 [Journal] [PubMed]
Hosaka R, Araki O, Ikeguchi T (2008) STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns. Neural Comput 20:415-35 [Journal] [PubMed]
Humphries MD, Gurney K (2007) Solution methods for a new class of simple model neurons. Neural Comput 19:3216-25 [Journal] [PubMed]
Humphries MD, Lepora N, Wood R, Gurney K (2009) Capturing dopaminergic modulation and bimodal membrane behaviour of striatal medium spiny neurons in accurate, reduced models. Front Comput Neurosci 3:26 [Journal] [PubMed]
   Dopamine-modulated medium spiny neuron, reduced model (Humphries et al. 2009) [Model]
Humphries MD, Wood R, Gurney K (2009) Dopamine-modulated dynamic cell assemblies generated by the GABAergic striatal microcircuit. Neural Netw 22:1174-88 [Journal] [PubMed]
   Striatal GABAergic microcircuit, dopamine-modulated cell assemblies (Humphries et al. 2009) [Model]
Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15:1063-70 [Journal] [PubMed]
   Artificial neuron model (Izhikevich 2003, 2004, 2007) [Model]
Izhikevich EM (2006) Polychronization: computation with spikes. Neural Comput 18:245-82 [Journal] [PubMed]
   Polychronization: Computation With Spikes (Izhikevich 2005) [Model]
Izhikevich EM (2007) Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb Cortex 17:2443-52 [Journal] [PubMed]
   Linking STDP and Dopamine action to solve the distal reward problem (Izhikevich 2007) [Model]
Kaltenbrunner A, Gómez V, López V (2007) Phase transition and hysteresis in an ensemble of stochastic spiking neurons. Neural Comput 19:3011-50 [Journal] [PubMed]
Litwin-Kumar A, Doiron B (2012) Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat Neurosci 15:1498-505 [Journal] [PubMed]
   Excitatory and inhibitory population activity (Bittner et al 2017) (Litwin-Kumar & Doiron 2017) [Model]
Martínez L, Pérez T, Mirasso CR, Manjarrez E (2007) Stochastic resonance in the motor system: effects of noise on the monosynaptic reflex pathway of the cat spinal cord. J Neurophysiol 97:4007-16 [Journal] [PubMed]
Masuda N, Kori H (2007) Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity. J Comput Neurosci 22:327-45 [Journal] [PubMed]
Morrison A, Aertsen A, Diesmann M (2007) Spike-timing-dependent plasticity in balanced random networks. Neural Comput 19:1437-67 [Journal] [PubMed]
Potjans TC, Diesmann M (2014) The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cereb Cortex 24:785-806 [Journal] [PubMed]
   A full-scale cortical microcircuit spiking network model (Shimoura et al 2018) [Model]
Richert M, Nageswaran JM, Dutt N, Krichmar JL (2011) An efficient simulation environment for modeling large-scale cortical processing. Front Neuroinform 5:19 [Journal] [PubMed]
   Efficient simulation environment for modeling large-scale cortical processing (Richert et al. 2011) [Model]
Rudolph M, Destexhe A (2006) Event-based simulation strategy for conductance-based synaptic interactions and plasticity Neurocomputing 69:1130-1133
Seth AK, Edelman GM (2007) Distinguishing causal interactions in neural populations. Neural Comput 19:910-33 [Journal] [PubMed]
Shanahan M (2008) A spiking neuron model of cortical broadcast and competition. Conscious Cogn 17:288-303 [Journal] [PubMed]
   A spiking model of cortical broadcast and competition (Shanahan 2008) [Model]
Teramae JN, Fukai T (2007) Local cortical circuit model inferred from power-law distributed neuronal avalanches. J Comput Neurosci 22:301-12 [Journal] [PubMed]
Tiesinga PH, Toups JV (2005) The possible role of spike patterns in cortical information processing. J Comput Neurosci 18:275-86 [Journal] [PubMed]
(20 refs)