Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Cai D, DeAngelis GC, Freeman RD (1997) Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. J Neurophysiol 78:1045-61 [PubMed]

References and models cited by this paper

References and models that cite this paper

Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2:284-99 [PubMed]
Alonso JM, Attick JJ, Reid RC (1995) The temporal responses of LGN receptive fields studied with white noise (Abstract) Invest Ophalmol Visual Sci Suppl 36:689
Baker CL (1990) Spatial- and temporal-frequency selectivity as a basis for velocity preference in cat striate cortex neurons. Vis Neurosci 4:101-13 [PubMed]
Braastad BO, Heggelund P (1985) Development of spatial receptive-field organization and orientation selectivity in kitten striate cortex. J Neurophysiol 53:1158-78 [Journal] [PubMed]
Bracewell RN (1978) The Fourier Transform and its Applications
Casagrande VA, Lateral TT (1991) Lateral geniculate nucleus: a review of its physiology and function Vision and Visual Dysfunction. The Neural Basis of Visual Function, Leventhal AG, ed. pp.41
Chapman B, Zahs KR, Stryker MP (1991) Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex. J Neurosci 11:1347-58 [PubMed]
Citron MC, Emerson RC, Levick WR (1988) Nonlinear measurement and classification of receptive fields in cat retinal ganglion cells. Ann Biomed Eng 16:65-77 [PubMed]
Citron MC, Kroeker JP, McCann GD (1981) Nonlinear interactions in ganglion cell receptive fields. J Neurophysiol 46:1161-76 [Journal] [PubMed]
Cleland BG, Enroth-cugell C (1968) Quantitative aspects of sensitivity and summation in the cat retina. J Physiol 198:17-38 [PubMed]
Cleland BG, Levick WR, Morstyn R, Wagner HG (1976) Lateral geniculate relay of slowly conducting retinal afferents to cat visual cortex. J Physiol 255:299-320 [PubMed]
Daniels JD, Norman JL, Pettigrew JD (1977) Biases for oriented moving bars in lateral geniculate nucleus neurons of normal and stripe-reared cats. Exp Brain Res 29:155-72 [PubMed]
Daniels JD, Pettigrew JD, Norman JL (1978) Development of single-neuron responses in kitten's lateral geniculate nucleus. J Neurophysiol 41:1373-93 [Journal] [PubMed]
Dawis S, Shapley R, Kaplan E, Tranchina D (1984) The receptive field organization of X-cells in the cat: spatiotemporal coupling and asymmetry. Vision Res 24:549-64 [PubMed]
DeAngelis GC, Ohzawa I, Freeman RD (1993) Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. J Neurophysiol 69:1118-35 [Journal] [PubMed]
DeAngelis GC, Ohzawa I, Freeman RD (1993) Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. J Neurophysiol 69:1091-117 [Journal] [PubMed]
DeAngelis GC, Ohzawa I, Freeman RD (1995) Receptive-field dynamics in the central visual pathways. Trends Neurosci 18:451-8 [PubMed]
Derrington AM, Lennie P (1982) The influence of temporal frequency and adaptation level on receptive field organization of retinal ganglion cells in cat. J Physiol 333:343-66 [PubMed]
Eckhorn R, Krause F, Nelson JI (1993) The RF-cinematogram. A cross-correlation technique for mapping several visual receptive fields at once. Biol Cybern 69:37-55 [PubMed]
Emerson RC, Citron MC, Vaughn WJ, Klein SA (1987) Nonlinear directionally selective subunits in complex cells of cat striate cortex. J Neurophysiol 58:33-65 [Journal] [PubMed]
Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 187:517-52 [PubMed]
Enroth-Cugell C, Robson JG, Schweitzer-Tong DE, Watson AB (1983) Spatio-temporal interactions in cat retinal ganglion cells showing linear spatial summation. J Physiol 341:279-307 [PubMed]
Ferster D, Chung S, Wheat H (1996) Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380:249-52 [Journal] [PubMed]
Frégnac Y, Imbert M (1984) Development of neuronal selectivity in primary visual cortex of cat. Physiol Rev 64:325-434 [Journal] [PubMed]
Golomb D, Kleinfeld D, Reid RC, Shapley RM, Shraiman BI (1994) On temporal codes and the spatiotemporal response of neurons in the lateral geniculate nucleus. J Neurophysiol 72:2990-3003 [Journal] [PubMed]
Hamasaki DI, Flynn JT (1977) Physiological properties of retinal ganglion cells of 3-week-old kittens. Vision Res 17:275-84 [PubMed]
Hartveit E, Heggelund P (1992) The effect of contrast on the visual response of lagged and nonlagged cells in the cat lateral geniculate nucleus. Vis Neurosci 9:515-25 [PubMed]
Hartveit E, Ramberg SI, Heggelund P (1993) Brain stem modulation of spatial receptive field properties of single cells in the dorsal lateral geniculate nucleus of the cat. J Neurophysiol 70:1644-55 [Journal] [PubMed]
Hawken MJ, Shapley RM, Grosof DH (1996) Temporal-frequency selectivity in monkey visual cortex. Vis Neurosci 13:477-92 [PubMed]
Hochstein S, Shapley RM (1976) Quantitative analysis of retinal ganglion cell classifications. J Physiol 262:237-64 [PubMed]
HUBEL DH, WIESEL TN (1961) Integrative action in the cat's lateral geniculate body. J Physiol 155:385-98 [PubMed]
HUBEL DH, WIESEL TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol 160:106-54 [PubMed]
Humphrey AL, Weller RE (1988) Functionally distinct groups of X-cells in the lateral geniculate nucleus of the cat. J Comp Neurol 268:429-47 [Journal] [PubMed]
Ikeda H, Tremain KE (1978) The development of spatial resolving power of lateral geniculate neurones in kittens. Exp Brain Res 31:193-206 [PubMed]
Jacobson LD, Gaska JP, Chen HW, Pollen DA (1993) Structural testing of multi-input linear-nonlinear cascade models for cells in macaque striate cortex. Vision Res 33:609-26 [PubMed]
Jagadeesh B, Wheat HS, Ferster D (1993) Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. Science 262:1901-4 [PubMed]
Jones JP, Palmer LA (1987) The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J Neurophysiol 58:1187-211 [Journal] [PubMed]
Kaplan E, Marcus S, So YT (1979) Effects of dark adaptation on spatial and temporal properties of receptive fields in cat lateral geniculate nucleus. J Physiol 294:561-80 [PubMed]
KUFFLER SW (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16:37-68 [Journal] [PubMed]
Lennie P (1980) Parallel visual pathways: a review. Vision Res 20:561-94 [PubMed]
Levick WR (1972) Another tungsten microelectrode. Med Biol Eng 10:510-5 [PubMed]
Mangel SC, Wilson JR, Sherman SM (1983) Development of neuronal response properties in the cat dorsal lateral geniculate nucleus during monocular deprivation. J Neurophysiol 50:240-64 [Journal] [PubMed]
Mastronarde DN (1987) Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptive-field properties and classification of cells. J Neurophysiol 57:357-80 [Journal] [PubMed]
McLean J, Palmer LA (1989) Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat. Vision Res 29:675-9 [PubMed]
McLean J, Raab S, Palmer LA (2003) Contribution of linear mechanisms to the specification of local motion by simple cells in areas 17 and 18 of the cat. Vis Neurosci 11:271-94
Milleret C, Buisseret P, Gary-Bobo E (1988) Area centralis position relative to the optic disc projection in kittens as a function of age. Invest Ophthalmol Vis Sci 29:1299-305 [PubMed]
Mitchell DE, Timney B (1984) Postnatal development of function in the mammalian visual system Handbook of Physiology. The Nervous System. Sensory Processes :507-555
Norman JL (1974) Development of Field Responses of the Lateral Geniculate Nucleus in Kittens PhD Thesis
Norman JL, Pettigrew JD, Daniels JD (1977) Early development of X-cells in kitten lateral geniculate nucleus. Science 198:202-4 [PubMed]
Olson CR, Freeman RD (1978) Eye alignment in kittens. J Neurophysiol 41:848-59 [Journal] [PubMed]
Palmer LA, Jones JP, Stepnoski RA (1991) Striate receptive fieldsas linear filters: Characterization in two dimensions of space Vision and Visual Dysfunction. The Neural Basis of Visual Function, Leventhal AG, ed. pp.246
Reid RC, Alonso JM (1995) Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378:281-4 [Journal] [PubMed]
Reid RC, Shapley RM (1990) Spatial and temporal characterisitics of cone inputs to macaque LGN cells as mapped by pseudorandom stimuli (Abstract) Invest Ophthalmol Visual Sci Suppl 31:429
Reid RC, Shapley RM (1992) Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus. Nature 356:716-8 [Journal] [PubMed]
Reid RC, Soodak RE, Shapley RM (1987) Linear mechanisms of directional selectivity in simple cells of cat striate cortex. Proc Natl Acad Sci U S A 84:8740-4 [PubMed]
Reid RC, Soodak RE, Shapley RM (1991) Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. J Neurophysiol 66:505-29 [Journal] [PubMed]
Rodieck RW (1965) Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Res 5:583-601 [PubMed]
Rusoff AC, Dubin MW (1977) Development of receptive-field properties of retinal ganglion cells in kittens. J Neurophysiol 40:1188-98 [Journal] [PubMed]
Saul AB, Humphrey AL (1990) Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. J Neurophysiol 64:206-24 [Journal] [PubMed]
Saul AB, Humphrey AL (1992) Evidence of input from lagged cells in the lateral geniculate nucleus to simple cells in cortical area 17 of the cat. J Neurophysiol 68:1190-208 [Journal] [PubMed]
Shapley RM, Reid RC (1991) Spatiotemporal receptive fields and direcoftion selectivity Computational Models of Visual Processing, Landy MS:Movshon JA, ed. pp.109
Shatz CJ (1990) Impulse activity and the patterning of connections during CNS development. Neuron 5:745-56 [PubMed]
Stevens JK, Gerstein GL (1976) Spatiotemporal organization of cat lateral geniculate receptive fields. J Neurophysiol 39:213-38 [Journal] [PubMed]
Theory D (1946) Theory of communication J Inst Electr Engrg 93:429-457
Tootle JS, Friedlander MJ (1989) Postnatal development of the spatial contrast sensitivity of X- and Y-cells in the kitten retinogeniculate pathway. J Neurosci 9:1325-40 [PubMed]
Troy JB (1983) Spatio-temporal interaction in neurones of the cat's dorsal lateral geniculate nucleus. J Physiol 344:419-32 [PubMed]
Vidyasagar TR, Urbas JV (1982) Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18. Exp Brain Res 46:157-69 [PubMed]
Watson AB, Ahumada AJ (1985) Model of human visual-motion sensing. J Opt Soc Am A 2:322-41 [PubMed]
Wilson PD, Rowe MH, Stone J (1976) Properties of relay cells in cat's lateral geniculate nucleus: a comparison of W-cells with X- and Y-cells. J Neurophysiol 39:1193-209 [Journal] [PubMed]
Wolfe JN, Wollman DE, Palmer LA (1994) Spatiotemporal receptive field structure of lagged cells in the cat LGN (Abstract) Invest Ophthalmol Visual Sci 35:1662
Casile A, Rucci M (2006) A theoretical analysis of the influence of fixational instability on the development of thalamocortical connectivity. Neural Comput 18:569-90 [Journal] [PubMed]
Huertas MA, Groff JR, Smith GD (2005) Feedback inhibition and throughput properties of an integrate-and-fire-or-burst network model of retinogeniculate transmission. J Comput Neurosci 19:147-80 [Journal] [PubMed]
McFarland JM, Cui Y, Butts DA (2013) Inferring nonlinear neuronal computation based on physiologically plausible inputs. PLoS Comput Biol 9:e1003143 [Journal] [PubMed]
   Nonlinear neuronal computation based on physiologically plausible inputs (McFarland et al. 2013) [Model]
Norheim ES, Wyller J, Nordlie E, Einevoll GT (2012) A minimal mechanistic model for temporal signal processing in the lateral geniculate nucleus. Cogn Neurodyn 6:259-81 [Journal] [PubMed]
   LGNcircuit: Minimal LGN network model of temporal processing of visual input (Norheim et al. 2012) [Model]
Shen YS, Gao H, Yao H (2005) Spike timing-dependent synaptic plasticity in visual cortex: a modeling study. J Comput Neurosci 18:25-39 [Journal] [PubMed]
Szatmáry B, Lorincz A (2001) Independent component analysis of temporal sequences subject to constraints by lateral geniculate nucleus inputs yields all the three major cell types of the primary visual cortex. J Comput Neurosci 11:241-8 [PubMed]
Wohrer A, Kornprobst P (2009) Virtual Retina: a biological retina model and simulator, with contrast gain control. J Comput Neurosci 26:219-49 [Journal] [PubMed]
   Virtual Retina: biological retina simulator, with contrast gain control (Wohrer and Kornprobst 2009) [Model]
Yu Y, Choe Y (2006) A neural model of the scintillating grid illusion: disinhibition and self-inhibition in early vision. Neural Comput 18:521-44 [Journal] [PubMed]
(78 refs)