Citation Relationships

Legends: Link to a Model Reference cited by multiple papers

Zhu XL, Zhang XD, Ye JM (2006) A Generalized Contrast Function and Stability Analysis for Overdetermined Blind Separation of Instantaneous Mixtures Neural Comput 18:709-728

References and models cited by this paper

References and models that cite this paper

Amari S (1998) Natural gradient works efficiently in learning Neural Comput 10:251-276
Amari S, Chen TP, Cichocki A (2000) Nonholonomic orthogonal learning algorithms for blind source separation. Neural Comput 12:1463-84 [PubMed]
Amari S, Cichocki A (1998) Adaptive blind signal processing: Neural network approaches Proc IEEE 86:2026-2048
Amari SL, Cichocki A, Yang HH (1996) A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems., Touretzky D:Mozer M:Hasselmo M, ed. pp.757
Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129-59 [PubMed]
Cao XR, Liu RW (1996) General approach to blind source separation IEEE Transactions On Signal Processing 44:562-571
Cardoso JF (1998) Blind source separation: Statistical principles Proc IEEE 86:2009-2025
Cardoso JF (1999) High-order contrasts for independent component analysis. Neural Comput 11:157-92 [PubMed]
Cardoso JF (2000) On the stability of source separation algorithms Journal Of VLSI Signal Processing 26:7-14
Cardoso JF, Laheld B (1996) Equivalent adaptive source separation. IEEE Trans Signal Proc 44:3017-3030
Cichocki A, Chen T, Amari S (1997) Stability Analysis of Learning Algorithms for Blind Source Separation. Neural Netw 10:1345-1351 [PubMed]
Cichocki A, Karhunen J, Kasprzak W, Vigario R (1999) Neural networks for blind separation with unknown number of sources Neurocomputing 24:55-93
Cichocki A, Sabala I, Choi S, Orsier B, Szupiluk R (1997) Self-adaptive independent component analysis for sub-gaussian and super-gaussian mixtures with an unknown number of sources and additive noise International Symposium On Nonlinear Theory And Its Applications 2:731-734
Cichocki A, Unbehauen R, Rummert E (1994) Robust learning algorithm for blind separation of signals Electronics Letters 30:1386-1387
Comon P (1994) Independent component analysis, a new concept? Signal Processing 36:287-314
Cover TM, Thomas JA (1991) Elements of Information Theory
Delfosse N, Loubaton P (1995) Adaptive blind separation of independent sources: A deflation approach Signal Processing 45:59-83
Douglas SC (2002) Simple algorithms for decorrelation-based blind source separation IEEE Workshop On Neural Networks For Signal Processing 12:545-554
Girolami M (1999) Self-organising neural networks: Independent component analysis and blind source separation
Golub GH, van_Loan CF (1996) Matrix computations
Hyvarinen A, Karunen J, Oja E (2001) Independent component analysis
Hyvarinen A, Oja E (1997) A fast fixed-point algorithm for independent component analysis Neural Comput 9:1483-1492
Karhunen J, Pajunen P, Oja E (1998) The nonlinear PCA criterion in blind source separation: Relations with other approaches Neurocomputing 22:5-20
Lewicki MS, Sejnowski TJ (2000) Learning overcomplete representations. Neural Comput 12:337-65 [PubMed]
Li YQ, Wang J (2002) Sequential blind extraction of instantaneously mixed sources IEEE Trans On Signal Processing 50:997-1006
Mathis H, Douglas SC (2002) On the existence of universal nonlinearities for blind source separation IEEE Trans Signal Processing 50:1007-1016
Moreau E, Macchi O (1996) High-order contrasts for self-adaptive source separation International Journal Of Adaptive Control And Signal Processi 10:19-46
Moreau E, Thirion-Moreau N (1999) Nonsymmetrical contrasts for source separation IEEE Trans On Signal Processing 47:2241-2252
Ohata M, Matsuoka K (2002) Stability analysis of information-theoretic blind separation algorithms in the case where the sources are nonlinear processes IEEE Trans Signal Processing 50:69-77
Oja E (1997) The nonlinear PCA learning rule and signal separation: Mathematical analysis Neurocomputing 17:25-46
Pham DT (2002) Mutual information approach to blind separation of stationary sources IEEE Trans Information Theory 48:1935-1946
Pham DT, Cardoso JF (2001) Blind separation of instantaneous mixtures of nonstationary sources IEEE Trans On Signal Processing 49:1837-1848
Sherman DA, Pasion SG, Forsburg SL (1998) Multiple domains of fission yeast Cdc19p (MCM2) are required for its association with the core MCM complex. Mol Biol Cell 9:1833-45 [PubMed]
Tong L, Liu R, Soon VC, Huang YF (1991) Indeterminacy and identifiability of blind identification IEEE Trans On Circuits And Systems 38:499-509
von_Hoff TP, Lindgren AG, Kaelin AN (2000) Transpose properties in the stability and performance of the classical adaptive algorithms for blind source separation and deconvolution Signal Processing 80:1807-1822
Yang HH, Amari S (1997) Adaptive on-line learning algorithms for blind separation: Maximum entropy and minimum mutual information Neural Comput 9:457-482
Ye JM, Zhu XL, Zhang XD (2004) Adaptive Blind Separation with an Unknown Number of Sources Neural Comput 16:1641-1660
Zhang LQ, Cichocki A, Amari S (1999) Natural gradient algorithm for blind separation of over-determined mixtures with additive noise IEEE Signal Processing Letters 6:293-295
Zhu XL, Zhang XD (2002) Adaptive RLS algorithm for blind source separation using a natural gradient Ieee Signal Processing Letters 9:432-435
Zhu XL, Zhang XD (2004) Overdetermined blind source separation based on singular value decomposition J Elect Inf Tech 26:337-343
(40 refs)