Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Hochreiter S, Obermayer K (2006) Support vector machines for dyadic data. Neural Comput 18:1472-510 [PubMed]

References and models cited by this paper

References and models that cite this paper

Ahlgren P, Jarneving B, Rousseau R (2003) Requirements for a cocitation similarity measure with special reference to Pearson's correlation coefficient J Am Soc Inf Sci Tech 54:550-560
Bayer AE, Smart JC, Mclaughlin GW (1990) Mapping intellectual structure of a scientific subfield through author cocitations J Am Soc Inf Sci 41:444-452
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing Jr Stat Soc Ser B 57:289-300
Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency Ann Stat 29:1165-1188
Blum AL, Langley P (1997) Selection of relevant feature and examples in machine learning Art Intell 97:245-271
Califano A, Stolovitzky G, Tu Y (1999) Analysis of gene expression microarrays for phenotype classification Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology :75-85
Chu W, Keerthi SS, Ong CJ (2004) Bayesian support vector regression using a unified loss function. IEEE Trans Neural Netw 15:29-44 [Journal] [PubMed]
Graepel T, Herbrich R, Bollmann-Sdorra P, Obermayer K (1999) Classification on pairwise proximity data Advances in neural information processing systems 11:438-444
Guyon I, Elisseeff A (2003) An introduction to variable and feature selection J Mach Learn Res 3:1157-1182
Herbrich R, Graepel T, Obermayer K (2000) Large margin rank boundaries for ordinal regression Advances in large margin classifiers, Smola A:Bartlett P:Scholkopf B:Schuurmans D, ed.
Heyer LJ, Kruglyak S, Yooseph S (1999) Exploring expression data: identification and analysis of coexpressed genes. Genome Res 9:1106-15 [PubMed]
Hochreiter S, Mozer MC, Obermayer K (2003) Coulomb classifiers: Generalizing support vector machines via an analogy to electrostatic systems Advances in neural information processing systems, Becker S:Thrun S:Obermayer K, ed. pp.545
Hochreiter S, Obermayer K (2004) Classification, regression, and feature selection on matrix data Tech. Rep. No. 2004-2
Hochreiter S, Obermayer K (2004) Gene selection for microarray data Kernel methods in computational biology, Scholkopf B:Tsuda K:Vert JP, ed. pp.319
Hochreiter S, Obermayer K (2004) Sphered support vector machine Tech Rep
Hochreiter S, Obermayer K (2005) Nonlinear feature selection with the potential support vector machine Feature extraction, foundations and applications, Guyon I:Gunn S:Nikravesh M:Zadeh L, ed.
Hoff PD (2005) Bilinear mixed-effects models for dyadic data J Am Stat Assoc 100:286-295
Hofmann T, Buhmann JM (1997) Pairwise data clustering by deterministic annealing IEEE Transactions On Pattern Analysis And Machine Intelligen 19:1-25
Hofmann T, Puzicha J (1998) Unsupervised learning from dyadic data Tech. Rep. No. TR-98-042
Kleinberg JM (1999) Authoritative sources in a hyperlinked environment J Assoc Comput Mach 46:604-632
Kohavi R, John GH (1996) Wrappers for feature subset selection Artificial Intelligence 97:273-324
Li H, Loken E (2002) A unified theory of statistical analysis and inference for variance component models for dyadic data Statistica Sinica 12:519-535
Lysov Y, Florentev V, Khorlin A, Khrapko K, Shik V, Mirzabekov A (1988) DNA sequencing by hybridization with oligonucleotides Doklady Academy Nauk USSR 303:1508-1511
Mangasarian OL (1998) Generalized support vector machines Tech. Rep. No. 98-14
Mika S, Ratsch G, Weston J, Scholkopf B, Muller KR (1999) Fisher discriminant analysis with kernels Neural networks for signal processing IX, Hu YH:Larson J:Wilson E:Douglas S, ed. pp.41
Ratsch G, Onoda T, Muller KR (2001) Soft margins for AdaBoost Mach Learn 42:287-320
Salton G (1968) Automatic information organization and retrieval
Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers TG, And (2000) A gene expression database for the molecular pharmacology of cancer. Nat Genet 24:236-44
Scholkopf B, Shawe-Taylor J, Smola AJ, Williamson RC (1999) Generalization bounds via eigenvalues of the gram matrix Tech. Rep. No. NC2-TR-1999-035
Scholkopf B, Smola AJ (2001) Learning with kernels: Support vector machines, regularization, optimization, and beyond
Shawe-taylor J, Bartlett P, Williamson R, Anthony M (1998) Structural risk minimization over data-dependent hierarchies IEEE Trans Info Theory 44:1926-1940
Shawe-Taylor J, Bartlett PL, Williamson R, Anthony M (1996) A framework for structural risk minimization Proceedings Of The 9th Annual Conference On Computational Learning Theory :68-76
Vapnik V (1998) Statistical Learning Theory
Werner D (2000) Funktional analysis (3rd ed)
White HD, Mccain KW (1989) Bibliometrics Ann Rev Inf Sci Tech 24:119-186
Knebel T, Hochreiter S, Obermayer K (2008) An SMO algorithm for the potential support vector machine. Neural Comput 20:271-87 [Journal] [PubMed]
(38 refs)