Legends: | Link to a Model | Reference cited by multiple papers |
References and models cited by this paper | References and models that cite this paper | |
Albert A (1972) Regression and the Moore-Penrose pseudoinverse Amari S, Murata N (1993) Statistical theory of learning curves under entropic loss criterion Neural Comput 5:140-154 Amari S, Nagaoka H (2001) Methods of information geometry Barndorff-nielsen O, Cox D (1989) Asymptotic techniques for use in statistics Baum E, Haussler D (1989) What size net gives valid generalization Neural Comput 1:151-160 Campbell S, Meyer C (1979) Generalized inverse of linear transformations Cox D, Hinkley D (1974) Theoretical statistics Cristianini N, Shawe-taylor J (2000) An introduction to support vector machines Devroye L, Gyorfi L, Lugosi G (1996) A probabilistic theory of pattern recognition Eguchi S, Copas J (2001) Information geometry on discriminant analysis and recent development J Korean Stat Soc 27:101-117 Gelfand I, Fomin S (1963) Calculus of variations Gotoh O (1982) An improved algorithm for matching biological sequences. J Mol Biol 162:705-8 [PubMed] Haussler D, Kearns M, Seung H, Tishby N (1996) Rigorous learning curve bounds from statistical mechanics Mach Learn 25:195-236 Jaakkola T, Haussler D (1999) Exploiting generative models in discriminative classifiers Advances in neural information processing systems, Kearns M:Solla S:Cohn D, ed. pp.487 Jaakkola T, Meila M, Jebara T (1999) Maximum entropy discrimination Tech. Rep. No. AITR-1668 Kawanabe M, Amari S (1994) Estimation of network parameters in semiparametric stochastic perceptron Neural Comput 6:1244-1261 Malzahn D, Opper M (2002) A variational approach to learning curves Advances in neural information processing systems, Dietterich TG:Becker S:Ghahramani Z, ed. pp.463 Müller KR, Finke M, Murata N, Schulten K, Amari S (1996) A numerical study on learning curves in stochastic multilayer feedforward networks. Neural Comput 8:1085-106 [PubMed] Müller KR, Mika S, Rätsch G, Tsuda K, Schölkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12:181-201 [Journal] [PubMed] Scholkopf B, Smola AJ (2001) Learning with kernels: Support vector machines, regularization, optimization, and beyond Seeger M (2000) Learning with labeled and unlabeled data Tech Rep Seeger M (2002) Covariance kernels from Bayesian generative models Advances in neural information processing systems, Dietterich TG:Becker S:Ghahramani Z, ed. pp.905 Seung HS, Sompolinsky H, Tishby N (1992) Statistical mechanics of learning from examples. Phys Rev A 45:6056-6091 [PubMed] Smith N, Gales M (2002) Speech recognition using SVMs Advances in neural information processing systems, Dietterich TG:Becker S:Ghahramani Z, ed. pp.1197 Sonnenburg S, Ratsch G, Jagota A, Muller KR (2002) New methods for splice site recognition Artificial neural networks--ICANN 2002, Dorronsoro J, ed. pp.329 Sugiyama M (2001) A theory of model selection and active learning for supervised learning Unpublished doctoral dissertation Tsuda K, Kawanabe M (2002) The leave-one-out kernel Artificial neural networks--ICANN 2002, Dorronsoro J, ed. pp.727 Tsuda K, Kawanabe M, Muller KR (2004) Clustering with the Fisher score Advances in neural information processing systems, Becker S:Thrun S:Obermayer K, ed. Tsuda K, Kawanabe M, Rätsch G, Sonnenburg S, Müller KR (2002) A new discriminative kernel from probabilistic models. Neural Comput 14:2397-414 [Journal] [PubMed] van_derVaart A (1998) Asymptotic statistics Vapnik V (1998) Statistical Learning Theory Vinokourov A, Girolami M (2002) A probabilistic framework for the hierarchic organization and classification of document collections J Intell Inform Systems 18:153-172 Watanabe S (2001) Algebraic analysis for nonidentifiable learning machines. Neural Comput 13:899-933 [PubMed] Watkin T, Rau A, Biehl M (1993) The statistical mechanics of learning a rule Rev Mod Phys 65:499 Zhang T, Oles F (2000) The value of unlabeled data for classification problems Proceedings of the Seventeenth International Conference on Machine Learning, Langley P, ed. pp.1191 Zien A, Rätsch G, Mika S, Schölkopf B, Lengauer T, Müller KR (2000) Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 16:799-807 [PubMed] |