Phase oscillator models for lamprey central pattern generators (Varkonyi et al. 2008)

 Download zip file 
Help downloading and running models
Accession:118392
In our paper, Varkonyi et al. 2008, we derive phase oscillator models for the lamprey central pattern generator from two biophysically based segmental models. We study intersegmental coordination and show how these models can provide stable intersegmental phase lags observed in real animals.
Reference:
1 . Várkonyi PL, Kiemel T, Hoffman K, Cohen AH, Holmes P (2008) On the derivation and tuning of phase oscillator models for lamprey central pattern generators. J Comput Neurosci 25:245-61 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Connectionist Network;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: MATLAB;
Model Concept(s): Temporal Pattern Generation; Oscillations; Spatio-temporal Activity Patterns; Parameter Fitting; Parameter sensitivity; Phase Response Curves;
Implementer(s): Varkonyi, Peter [vpeter at mit.bme.hu];
/
varkonyiEtAl2008
FIG_9_12
activity.m
FIG_9_12.m
williams.m
williamschain.m
                            
function y=williams(t,x)
global ve vl vc exc inh dist ton;

%number of segmental units in chain
smax=length(x)/6;

%some 0-s are added to vector x for technical reasons
xx=[zeros(6*5,1); x; zeros(6*5,1)];



%dynamics of uncoupled oscillator
y=ton.*(1-x)-.1*x;

for i=1:size(dist,1)
    y=y+dist(i,2)*exc*max(0,xx(31+dist(i,1)*6:end-30+dist(i,1)*6)).*(1-x);
    y=y+dist(i,2)*inh*max(0,xx(31+dist(i,1)*6:end-30+dist(i,1)*6)).*(-1-x);
end