Neural model of frog ventilatory rhythmogenesis (Horcholle-Bossavit and Quenet 2009)

 Download zip file 
Help downloading and running models
Accession:123987
"In the adult frog respiratory system, periods of rhythmic movements of the buccal floor are interspersed by lung ventilation episodes. The ventilatory activity results from the interaction of two hypothesized oscillators in the brainstem. Here, we model these oscillators with two coupled neural networks, whose co-activation results in the emergence of new dynamics. .. The biological interest of this formal model is illustrated by the persistence of the relevant dynamical features when perturbations are introduced in the model, i.e. dynamic noises and architecture modifications. The implementation of the networks with clock-driven continuous time neurones provides simulations with physiological time scales."
Reference:
1 . Horcholle-Bossavit G, Quenet B (2009) Neural model of frog ventilatory rhythmogenesis. Biosystems 97:35-43 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: MATLAB;
Model Concept(s): Temporal Pattern Generation; Oscillations; Synchronization;
Implementer(s):
%Biosystems. 2009 Jul;97(1):35-43.
%Horcholle-Bossavit G, Quenet B.
%Neural model of frog ventilatory rhythmogenesis.

%detection of lung episodes

function [durmoy,intermoy]=detectionblsimmcp(signal,fe,fbase,pourcent)

global amplitude difamplitude
global maxetiq maxetiqcor indiceun dindiceun indebepil
signal=signal(100:end);
dsignal=diff(signal);
N1=length(signal);
maxlocal=signal(1);
tempsmaxlocal=2;
minlocal=signal(1);
tempsminlocal=2;
maxilocaux=maxlocal;
tempsmaxilocaux=1;
minilocaux=minlocal;
tempsminilocaux=1;

dt=1/fe;
signalfnu = fft(signal-mean(signal),N1);
nu1=[-N1/2:N1/2-1]/(N1*dt);

signalfnu2=fftshift(signalfnu);
signalfnu3=abs(signalfnu2(round(end/2)+1:end));
nu1cor=nu1(round(end/2)+1:end);

nu2cor=nu1cor(round(length(nu1cor)*0.5*2/fe):end);                                      
signalfnu4=signalfnu3(round(length(nu1cor)*0.5*2/fe):end);
maxfreq=abs(nu2cor((signalfnu4==max(signalfnu4))));

persignal=1/fbase;
perpointssignal=persignal*fe;
tempsref=perpointssignal/2;
              
compteurtempsmax=0;
compteurtempsmin=0;
for i=2:length(signal)
    if signal(i)>maxlocal
        maxlocal=signal(i);
        tempsmaxlocal=i;
         compteurtempsmax=0;
    else compteurtempsmax=compteurtempsmax+1;
    end
    
     if signal(i)<minlocal
        minlocal=signal(i);
        tempsminlocal=i;
         compteurtempsmin=0;
    else compteurtempsmin=compteurtempsmin+1;
    end
     
     
     if compteurtempsmax>tempsref
         a=dsignal(tempsmaxlocal);
         b=dsignal(tempsmaxlocal-1);
         if   a*b<0                                            
            maxilocaux=[maxilocaux,maxlocal];
            tempsmaxilocaux=[tempsmaxilocaux,tempsmaxlocal];           
       end
         maxlocal=min(signal);
         tempsmaxlocal=i;
         compteurtempsmax=0;   
     end
    
    if compteurtempsmin>tempsref
         a=dsignal(tempsminlocal);
         b=dsignal(tempsminlocal-1);
         if  a*b<0
            minilocaux=[minilocaux,minlocal];
            tempsminilocaux=[tempsminilocaux,tempsminlocal];
         end
         minlocal=max(signal);
         tempsminlocal=i;
         compteurtempsmin=0;
         
    end
end

vmin=[(tempsminilocaux(2:end))',(minilocaux(2:end))'];
vmax=[(tempsmaxilocaux(2:end))',(maxilocaux(2:end))'];


vmininterp=interp1([tempsminilocaux(2:end), length(signal)],[minilocaux(2:end), signal(end)],1:tempsref/2:length(signal));
vmaxinterp=interp1([tempsmaxilocaux(2:end),length(signal)] ,[maxilocaux(2:end), signal(end)],1:tempsref/2:length(signal));
amplitude=vmaxinterp-vmininterp;
difamplitude=diff(amplitude);


[xref,vtot]=smoothist(amplitude,100);
refb=xref((vtot==max(vtot)))+mean(vmin(:,2));
pourcentb=pourcent;                                                                  
amplb=refb+pourcentb*refb/100;
pourcentl=pourcent;                                                                   
ampll=(max(vmax(:,2))-amplb)*(pourcentl/100)+amplb;

indmaxb=find(vmax(:,2)<=amplb);
vmaxb=vmax(indmaxb,:);
indmaxl=find(vmax(:,2)>ampll);
vmaxl=vmax(indmaxl,:);
indmaxnibnil=find(vmax(:,2)>amplb & vmax(:,2)<=ampll);
vmaxnibnil=vmax(indmaxnibnil,:);


prepmaxetiq=[vmaxb(:,1), zeros(size(vmaxb(:,1))); vmaxl(:,1), ones(size(vmaxl(:,1))); vmaxnibnil(:,1), zeros(size(vmaxnibnil(:,1)))];
[maxetiq,ind]=sort(prepmaxetiq(:,1));
maxetiq=[maxetiq,prepmaxetiq(ind,2)];

maxetiqcor=maxetiq(:,2)+circshift(maxetiq(:,2),[1,0])+circshift(maxetiq(:,2),[-1,0]);
maxetiqcor=(maxetiqcor>0);

indiceun=find(maxetiqcor==1) ;                                          
dindiceun=diff(indiceun);
indebepil=find(dindiceun>1);
nombrepil=length(indebepil)+1;

if nombrepil>1  ,
debutepil(1)=maxetiq(indiceun(1),1);
finepil(1)=maxetiq(indiceun(indebepil(1),1));
for i=2:nombrepil-1
    debutepil(i)=maxetiq(indiceun(indebepil(i-1)+1,1));
    finepil(i)=maxetiq(indiceun(indebepil(i),1));
end
debutepil(nombrepil)=maxetiq(indiceun(indebepil(nombrepil-1)+1,1));
finepil(nombrepil)=maxetiq(indiceun(end,1));

durepil=finepil-debutepil;
durmoy=mean(durepil)/fe;                                           %secondes
interepil=debutepil(2:end)-finepil(1:end-1);
intermoy=mean(interepil)/fe;                                        %secondes

vectzones=zeros(debutepil(1),1);
vectzones=[vectzones; ones(finepil(1)-debutepil(1), 1)];
for i=2:length(debutepil)
    vectzones=[vectzones; zeros(debutepil(i)-finepil(i-1), 1)];
    vectzones=[vectzones; ones(finepil(i)-debutepil(i), 1)];
end
vectzones=[vectzones; zeros(length(signal)-finepil(end), 1)];

signalb=signal((vectzones==0));
signall=signal((vectzones==1));

else
    disp('no lung episode');
end