Olfactory bulb cluster formation (Migliore et al. 2010)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:127995
Functional roles of distributed synaptic clusters in the mitral-granule cell network of the olfactory bulb.
Reference:
1 . Migliore M, Hines ML, McTavish TS, Shepherd GM (2010) Functional roles of distributed synaptic clusters in the mitral-granule cell network of the olfactory bulb. Front Integr Neurosci 4:122 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral cell; Olfactory bulb main interneuron granule MC cell;
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Short-term Synaptic Plasticity; Olfaction;
Implementer(s): Hines, Michael [Michael.Hines at Yale.edu]; Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Olfactory bulb main mitral cell; Olfactory bulb main interneuron granule MC cell; AMPA; I Na,t; I K;
/
migliore2010
README
ampanmda.mod
fi.mod
kamt.mod *
kdrmt.mod *
naxn.mod *
ThreshDetect.mod *
.hg_archival.txt
6.2.3.2203.spk
allsynhinton.hoc *
clear.hoc *
connect.hoc
granule.hoc
iterator.hoc
lptiter.hoc
mgrs.hoc
mitral.hoc
mosinit.hoc
net-5mt-100-900.hoc
odors.txt
parinit.hoc
pattern.hoc
perfrun.hoc
show.hoc
somesyn.hoc *
start.hoc
start.ses *
stim-odors-AB-seq.hoc
weight_movie.hoc *
weight-forfig3-bulb1.dat
weightsave.hoc
                            
: copied by Hines from Exp2syn and added spike dependent plasticity
COMMENT
Two state kinetic scheme synapse described by rise time tau1,
and decay time constant tau2. The normalized peak condunductance is 1.
Decay time MUST be greater than rise time.

The solution of A->G->bath with rate constants 1/tau1 and 1/tau2 is
 A = a*exp(-t/tau1) and
 G = a*tau2/(tau2-tau1)*(-exp(-t/tau1) + exp(-t/tau2))
	where tau1 < tau2

If tau2-tau1 -> 0 then we have a alphasynapse.
and if tau1 -> 0 then we have just single exponential decay.

The factor is evaluated in the
initial block such that an event of weight 1 generates a
peak conductance of 1.

Because the solution is a sum of exponentials, the
coupled equations can be solved as a pair of independent equations
by the more efficient cnexp method.

ENDCOMMENT

NEURON {
	POINT_PROCESS FastInhib
	RANGE tau1, tau2, e, i
	NONSPECIFIC_CURRENT i
	RANGE gmax
	RANGE x, mgid, ggid, srcgid
	GLOBAL ltdinvl, ltpinvl, sighalf, sigslope

	RANGE g
}

UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(uS) = (microsiemens)
}

PARAMETER {
	tau1=1 (ms) <1e-9,1e9>
	tau2 = 200 (ms) <1e-9,1e9>
	gmax = .003 (uS) 
	e = -80	(mV)
	ltdinvl = 250 (ms)		: longer intervals, no change
	ltpinvl = 30 (ms)		: shorter interval, LTP
	sighalf = 25 (1)
	sigslope = 3 (1)
	x = 0 (um) : cartesian synapse location
	mgid = -1 : associated mitral gid
	ggid = -1 : associated granule gid
	srcgid = -1 : the gid of the granule detector
}

ASSIGNED {
	v (mV)
	i (nA)
	g (uS)
	factor
	w (uS)
	total (uS)
}

STATE {
	A
	B
}

INITIAL {
	LOCAL tp
	if (tau1/tau2 > .9999) {
		tau1 = .9999*tau2
	}
	A = 0
	B = 0
	tp = (tau1*tau2)/(tau2 - tau1) * log(tau2/tau1)
	factor = -exp(-tp/tau1) + exp(-tp/tau2)
	factor = 1/factor
}

BREAKPOINT {
	SOLVE state METHOD cnexp
	g = (B - A)*gmax
	i = g*(v - e)
}

DERIVATIVE state {
	A' = -A/tau1
	B' = -B/tau2
}

FUNCTION plast(step(1))(1) {
	plast = 1 - 1/(1 + exp((step - sighalf)/sigslope))
}

NET_RECEIVE(weight, s, w, tlast (ms)) {
	INITIAL {
		s = 0
		w = 0
		tlast = -1e9(ms)
	}
	if (t - tlast < ltpinvl) { : LTP
		s = s + 1
		if (s > 2*sighalf) { s = 2*sighalf }
	}else if (t - tlast > ltdinvl) { : no change
	}else{ : LTD
		s = s - 1
		if (s < 0) { s = 0 }
	}
	tlast = t
	w = weight*plast(s)
	A = A + w*factor
	B = B + w*factor
}