Cerebellar cortex oscil. robustness from Golgi cell gap jncs (Simoes de Souza and De Schutter 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:139656
" ... Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. ..."
Reference:
1 . Simões de Souza F, De Schutter E (2011) Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations Neural Systems & Circuits 1:7:1-19
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum interneuron granule GLU cell; Cerebellum golgi cell;
Channel(s):
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA; NMDA;
Gene(s): HCN1; HCN2;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Synchronization; Action Potentials;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  Cerebellum interneuron granule GLU cell; GabaA; AMPA; NMDA;
/
network
data
README.txt
gap.mod
Golgi_BK.mod *
Golgi_Ca_HVA.mod *
Golgi_Ca_LVA.mod *
Golgi_CALC.mod *
Golgi_CALC_ca2.mod *
Golgi_hcn1.mod *
Golgi_hcn2.mod *
Golgi_KA.mod *
Golgi_KM.mod *
Golgi_KV.mod *
Golgi_lkg.mod *
Golgi_Na.mod *
Golgi_NaP.mod *
Golgi_NaR.mod *
Golgi_SK2.mod *
GRC_CA.mod *
GRC_CALC.mod *
GRC_KA.mod *
GRC_KCA.mod *
GRC_KIR.mod *
GRC_KM.mod *
GRC_KV.mod *
GRC_LKG1.mod *
GRC_LKG2.mod *
GRC_NA.mod *
K_conc.mod *
Na_conc.mod *
Golgi_ComPanel.hoc *
Golgi_template.hoc
granule_template.hoc
MF_template.hoc
mosinit.hoc
network.hoc
utils.hoc *
                            
TITLE Cerebellum Granule Cell Model

COMMENT
        KA channel
   
	Author: E.D'Angelo, T.Nieus, A. Fontana
	Last revised: Egidio 3.12.2003
ENDCOMMENT

NEURON { 
	SUFFIX GRC_KA
	USEION k READ ek WRITE ik 
	RANGE gkbar, ik, g, alpha_a, beta_a, alpha_b, beta_b
	RANGE Aalpha_a, Kalpha_a, V0alpha_a
	RANGE Abeta_a, Kbeta_a, V0beta_a
	RANGE Aalpha_b, Kalpha_b, V0alpha_b
	RANGE Abeta_b, Kbeta_b, V0beta_b
	RANGE V0_ainf, K_ainf, V0_binf, K_binf
	RANGE a_inf, tau_a, b_inf, tau_b 
} 
 
UNITS { 
	(mA) = (milliamp) 
	(mV) = (millivolt) 
} 
 
PARAMETER { 
	Aalpha_a = 0.8147 (/ms) :4.88826
	Kalpha_a = -23.32708 (mV)
	V0alpha_a = -9.17203 (mV)
	Abeta_a = 0.1655 (/ms)   : 0.99285	
	Kbeta_a = 19.47175 (mV)
	V0beta_a = -18.27914 (mV)

	Aalpha_b = 0.0368 (/ms)  : 0.11042 
	Kalpha_b = 12.8433 (mV)
	V0alpha_b = -111.33209 (mV)   
	Abeta_b = 0.0345(/ms)   : 0.10353 
	Kbeta_b = -8.90123 (mV)
	V0beta_b = -49.9537 (mV)

	V0_ainf = -38(mV)
	K_ainf = -17(mV)

	V0_binf = -78.8 (mV)
	K_binf = 8.4 (mV)
	v (mV) 
	gkbar= 0.0032 (mho/cm2) :0.003 
	ek = -84.69 (mV) 
	celsius = 30 (degC) 
} 

STATE { 
	a
	b 
} 

ASSIGNED { 
	ik (mA/cm2) 
	a_inf 
	b_inf 
	tau_a (ms) 
	tau_b (ms) 
	g (mho/cm2) 
	alpha_a (/ms)
	beta_a (/ms)
	alpha_b (/ms)
	beta_b (/ms)
} 
 
INITIAL { 
	rate(v) 
	a = a_inf 
	b = b_inf 
} 
 
BREAKPOINT { 
	SOLVE states METHOD derivimplicit 
	g = gkbar*a*a*a*b 
	ik = g*(v - ek)
	alpha_a = alp_a(v)
	beta_a = bet_a(v) 
	alpha_b = alp_b(v)
	beta_b = bet_b(v) 
} 
 
DERIVATIVE states { 
	rate(v) 
	a' =(a_inf - a)/tau_a 
	b' =(b_inf - b)/tau_b 
} 
 
FUNCTION alp_a(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-25.5(degC))/10(degC))
:	alp_a = Q10*Aalpha_a*exp(Kalpha_a*(v-V0alpha_a)) 
:	alp_a = -0.04148(/mV-ms)*linoid(v+67.697(mV),-3.857(mV))
	alp_a = Q10*Aalpha_a*sigm(v-V0alpha_a,Kalpha_a)
} 
 
FUNCTION bet_a(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-25.5(degC))/10(degC))
:	bet_a = Q10*Abeta_a*exp(Kbeta_a*(v-V0beta_a)) 
:	bet_a = 0.0359(/mV-ms)*linoid(v+45.878(mV),23.654(mV))
	bet_a = Q10*Abeta_a/(exp((v-V0beta_a)/Kbeta_a))
} 
 
FUNCTION alp_b(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-25.5(degC))/10(degC))
:	alp_b = Q10*Aalpha_b*exp(Kalpha_b*(v-V0alpha_b)) 
:	alp_b = 0.356(/mV-ms)*linoid(v+231.03(mV),17.8(mV))
	alp_b = Q10*Aalpha_b*sigm(v-V0alpha_b,Kalpha_b)
} 
 
FUNCTION bet_b(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-25.5(degC))/10(degC))
:	bet_b = Q10*Abeta_b*exp(Kbeta_b*(v-V0beta_b)) 
:	bet_b = -0.00825(/mV-ms)*linoid(v+43.284(mV),-8.927(mV))
	bet_b = Q10*Abeta_b*sigm(v-V0beta_b,Kbeta_b)
} 
 
PROCEDURE rate(v (mV)) {LOCAL a_a, b_a, a_b, b_b 
	TABLE a_inf, tau_a, b_inf, tau_b 
	DEPEND Aalpha_a, Kalpha_a, V0alpha_a, 
	       Abeta_a, Kbeta_a, V0beta_a,
               Aalpha_b, Kalpha_b, V0alpha_b,
               Abeta_b, Kbeta_b, V0beta_b, celsius FROM -100 TO 30 WITH 13000 
	a_a = alp_a(v)  
	b_a = bet_a(v) 
	a_b = alp_b(v)  
	b_b = bet_b(v) 
	a_inf = 1/(1+exp((v-V0_ainf)/K_ainf)) 
	tau_a = 1/(a_a + b_a) 
	b_inf = 1/(1+exp((v-V0_binf)/K_binf))
	tau_b = 1/(a_b + b_b) 
: Bardoni Belluzzi data
:	a_inf = 1/(1+exp(-(v+46.7)/19.8))
:	tau_a = 0.41*exp(-(v+43.5)/42.8)+0.167
:	b_inf = 1/(1+exp((v+78.8)/8.4))
:	tau_b = 10.8 + 0.03*v + 1/(57.9*exp(0.127*v)+0.000134*exp(-0.059*v))
}

FUNCTION linoid(x (mV),y (mV)) (mV) {
        if (fabs(x/y) < 1e-6) {
                linoid = y*(1 - x/y/2)
        }else{
                linoid = x/(exp(x/y) - 1)
        }
} 

FUNCTION sigm(x (mV),y (mV)) {
                sigm = 1/(exp(x/y) + 1)
}