Cerebellar cortex oscil. robustness from Golgi cell gap jncs (Simoes de Souza and De Schutter 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:139656
" ... Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. ..."
Reference:
1 . Simões de Souza F, De Schutter E (2011) Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations Neural Systems & Circuits 1:7:1-19
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum interneuron granule GLU cell; Cerebellum golgi cell;
Channel(s):
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA; NMDA;
Gene(s): HCN1; HCN2;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Synchronization; Action Potentials;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  Cerebellum interneuron granule GLU cell; GabaA; AMPA; NMDA;
/
network
data
README.txt
gap.mod
Golgi_BK.mod *
Golgi_Ca_HVA.mod *
Golgi_Ca_LVA.mod *
Golgi_CALC.mod *
Golgi_CALC_ca2.mod *
Golgi_hcn1.mod *
Golgi_hcn2.mod *
Golgi_KA.mod *
Golgi_KM.mod *
Golgi_KV.mod *
Golgi_lkg.mod *
Golgi_Na.mod *
Golgi_NaP.mod *
Golgi_NaR.mod *
Golgi_SK2.mod *
GRC_CA.mod *
GRC_CALC.mod *
GRC_KA.mod *
GRC_KCA.mod *
GRC_KIR.mod *
GRC_KM.mod *
GRC_KV.mod *
GRC_LKG1.mod *
GRC_LKG2.mod *
GRC_NA.mod *
K_conc.mod *
Na_conc.mod *
Golgi_ComPanel.hoc *
Golgi_template.hoc
granule_template.hoc
MF_template.hoc
mosinit.hoc
network.hoc
utils.hoc *
                            
TITLE Cerebellum Granule Cell Model

COMMENT
        Kir channel
   
	Author: E.D'Angelo, T.Nieus, A. Fontana
	Last revised: 8.10.2000
	Old values:
			gkbar = 0.0003 (mho/cm2) 
			
ENDCOMMENT
 
NEURON { 
	SUFFIX GRC_KIR
	USEION k READ ek WRITE ik 
	RANGE gkbar, ik, g, alpha_d, beta_d 
	RANGE Aalpha_d, Kalpha_d, V0alpha_d
	RANGE Abeta_d, Kbeta_d, V0beta_d
	RANGE d_inf, tau_d 
} 
 
UNITS { 
	(mA) = (milliamp) 
	(mV) = (millivolt) 
} 
 
PARAMETER { 
	Aalpha_d = 0.13289 (/ms)

	:Kalpha_d = -0.041 (/mV)
	Kalpha_d = -24.3902 (mV)

	V0alpha_d = -83.94 (mV)
	Abeta_d = 0.16994 (/ms)

	:Kbeta_d = 0.028 (/mV)
	Kbeta_d = 35.714 (mV)

	V0beta_d = -83.94 (mV)
	v (mV) 
	gkbar = 0.0009 (mho/cm2) 
	ek = -84.69 (mV) 
	celsius = 30 (degC) 
} 

STATE { 
	d 
} 

ASSIGNED { 
	ik (mA/cm2) 
	d_inf 
	tau_d (ms) 
	g (mho/cm2) 
	alpha_d (/ms) 
	beta_d (/ms) 
} 
 
INITIAL { 
	rate(v) 
	d = d_inf 
} 
 
BREAKPOINT { 
	SOLVE states METHOD derivimplicit
	g = gkbar*d   : primo ordine!!!
	ik = g*(v - ek) 
	alpha_d = alp_d(v) 
	beta_d = bet_d(v) 
} 
 
DERIVATIVE states { 
	rate(v) 
	d' =(d_inf - d)/tau_d 
} 
 
FUNCTION alp_d(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-20(degC))/10(degC))
	alp_d = Q10*Aalpha_d*exp((v-V0alpha_d)/Kalpha_d) 
} 
 
FUNCTION bet_d(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-20(degC))/10(degC))
	bet_d = Q10*Abeta_d*exp((v-V0beta_d)/Kbeta_d) 
} 
 
PROCEDURE rate(v (mV)) {LOCAL a_d, b_d 
	TABLE d_inf, tau_d  
	DEPEND Aalpha_d, Kalpha_d, V0alpha_d, 
	       Abeta_d, Kbeta_d, V0beta_d, celsius FROM -100 TO 30 WITH 13000 
	a_d = alp_d(v)  
	b_d = bet_d(v) 
	tau_d = 1/(a_d + b_d) 
	d_inf = a_d/(a_d + b_d) 
}