Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)

 Download zip file 
Help downloading and running models
"... We simulated detailed conductance-based models of TTCs (Layer 5 thick tufted pyramidal cells) forming recurrent microcircuits that were interconnected as found experimentally; the network was embedded in a realistic background synaptic activity. ... Our findings indicate that dendritic nonlinearities are pivotal in controlling the gain and the computational functions of TTCs microcircuits, which serve as a dominant output source for the neocortex. "
1 . Hay E, Segev I (2015) Dendritic Excitability and Gain Control in Recurrent Cortical Microcircuits. Cereb Cortex 25:3561-71 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Dendrite;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 L6 pyramidal corticothalamic cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I A, slow;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA; Glutamate;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Laminar Connectivity; Orientation selectivity;
Implementer(s): Hay, Etay [etay.hay at mail.huji.ac.il];
Search NeuronDB for information about:  Neocortex V1 L6 pyramidal corticothalamic cell; GabaA; AMPA; NMDA; Glutamate; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I A, slow; Gaba; Glutamate;
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
epsp.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
ProbUDFsyn2.mod *
SK_E2.mod *
SKv3_1.mod *
cell1.asc *
Author: Etay Hay 2014

Reference: Dendritic excitability and gain control in recurrent
cortical microcircuits (Hay and Segev, 2014, Cerebral Cortex)

Parallel simulation of microcircuit of L5 thick tufted pyramidal cells

Parameters for the user to play with:
1. Nmc = number of cells in the microcircuits
2. connectivity = 0 or 1, whether the cells are interconnected or not
3. modelnum = 1 to 6, referring to the different biophysical models
4. condition = simulation condition, see comments in file for options