Olfactory Bulb mitral-granule network generates beta oscillations (Osinski & Kay 2016)

 Download zip file 
Help downloading and running models
Accession:185464
This model of the dendrodendritic mitral-granule synaptic network generates gamma and beta oscillations as a function of the granule cell excitability, which is represented by the granule cell resting membrane potential.
Reference:
1 . Osinski BL, Kay LM (2016) Granule cell excitability regulates gamma and beta oscillations in a model of the olfactory bulb dendrodendritic microcircuit. J Neurophysiol 116:522-539 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Dendrite;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main interneuron granule MC cell; Olfactory bulb main interneuron granule TC cell; Abstract integrate-and-fire leaky neuron;
Channel(s): I N; I Sodium; I Calcium;
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: MATLAB;
Model Concept(s): Oscillations; Active Dendrites; Extracellular Fields; Calcium dynamics; Gamma oscillations; Beta oscillations;
Implementer(s): Osinski, Boleslaw [boleszek at uchicago.edu];
Search NeuronDB for information about:  Olfactory bulb main interneuron granule MC cell; Olfactory bulb main interneuron granule TC cell; AMPA; NMDA; Gaba; I N; I Sodium; I Calcium; Gaba; Glutamate;