Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:187604
This model is a full-scale, biologically constrained rodent hippocampal CA1 network model that includes 9 cells types (pyramidal cells and 8 interneurons) with realistic proportions of each and realistic connectivity between the cells. In addition, the model receives realistic numbers of afferents from artificial cells representing hippocampal CA3 and entorhinal cortical layer III. The model is fully scaleable and parallelized so that it can be run at small scale on a personal computer or large scale on a supercomputer. The model network exhibits spontaneous theta and gamma rhythms without any rhythmic input. The model network can be perturbed in a variety of ways to better study the mechanisms of CA1 network dynamics. Also see online code at http://bitbucket.org/mbezaire/ca1 and further information at http://mariannebezaire.com/models/ca1
Reference:
1 . Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I (2016) Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. Elife [PubMed]
2 . Bezaire M, Raikov I, Burk K, Armstrong C, Soltesz I (2016) SimTracker tool and code template to design, manage and analyze neural network model simulations in parallel NEURON bioRxiv
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA1 interneuron oriens alveus GABA cell; Hippocampus CA1 basket cell; Hippocampus CA1 stratum radiatum interneuron; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell; Hippocampus CA1 PV+ fast-firing interneuron;
Channel(s): I Na,t; I K; I K,leak; I h; I K,Ca; I Calcium;
Gap Junctions:
Receptor(s): GabaA; GabaB; Glutamate; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; NEURON (web link to model);
Model Concept(s): Oscillations; Methods; Connectivity matrix; Laminar Connectivity; Gamma oscillations;
Implementer(s): Bezaire, Marianne [mariannejcase at gmail.com]; Raikov, Ivan [ivan.g.raikov at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; Hippocampus CA1 interneuron oriens alveus GABA cell; GabaA; GabaB; Glutamate; Gaba; I Na,t; I K; I K,leak; I h; I K,Ca; I Calcium; Gaba; Glutamate;
TITLE Calcium activated potassium channel (voltage dependent)

COMMENT
Ca2+-activated K+ channel (voltage dependent)

Ions: k

Style: quasi-ohmic

From: Modified from Moczydlowski and Latorre (1983) J. Gen. Physiol. 82

Updates:
2014 December (Marianne Bezaire): documented
ENDCOMMENT


VERBATIM
#include <stdlib.h> /* 	Include this library so that the following
						(innocuous) warning does not appear:
						 In function '_thread_cleanup':
						 warning: incompatible implicit declaration of 
						          built-in function 'free'  */
ENDVERBATIM

UNITS {
	(molar) = (1/liter)
}

UNITS {
	(mV) =	(millivolt)
	(mA) =	(milliamp)
	(mM) =	(millimolar)
}

NEURON {
	SUFFIX ch_KvCaB
	USEION k READ ek WRITE ik
	USEION ca READ cai VALENCE 2
	:USEION nca READ ncai VALENCE 2
	:USEION lca READ lcai VALENCE 2
	:USEION tca READ tcai VALENCE 2
	RANGE gmax, g, ik
	RANGE myi
	GLOBAL oinf, otau	: these two are not thread safe
    THREADSAFE
}

UNITS {
	FARADAY = (faraday)  (kilocoulombs)
	R = 8.313424 (joule/degC)
}

PARAMETER {	: clean up the PARAMETER and ASSIGNED blocks
	gmax=.01	(mho/cm2)	: Maximum Permeability

	d1 = .84
	d2 = 1.	
	k1 = .48e-3	(mM)
	k2 = .13e-6	(mM)
	:cai = 5.e-5	(mM)
	cai (mM)
	
	abar = .28	(/ms)
	bbar = .48	(/ms)
	
	st=1		(1)
}

ASSIGNED {	: clean up the PARAMETER and ASSIGNED blocks
      celsius (degC) : temperature - set in hoc; default is 6.3
	v			(mV)

	:lcai		(mV)
	:ncai		(mV)
	:tcai		(mV)

	ek			(mV)
	ik			(mA/cm2)

	oinf
	otau		(ms)
	g		(mho/cm2)
	myi (mA/cm2)
}

INITIAL {
	:cai= ncai + lcai : + tcai
        rate(v,cai)
        o=oinf
}

STATE {	o }		: fraction of open channels

BREAKPOINT {
	SOLVE state METHOD cnexp
	g = gmax*o^st
	ik = g*(v - ek)
	myi = ik
}

DERIVATIVE state {	: exact when v held constant; integrates over dt step
	:cai= ncai + lcai : + tcai
	rate(v, cai)
	o' = (oinf - o)/otau
}

FUNCTION alp(v (mV), c (mM)) (1/ms) { :callable from hoc
	alp = c*abar/(c + exp1(k1,d1,v))
}

FUNCTION bet(v (mV), c (mM)) (1/ms) { :callable from hoc
	bet = bbar/(1 + c/exp1(k2,d2,v))
}

FUNCTION exp1(k (mM), d, v (mV)) (mM) { :callable from hoc
	exp1 = k*exp(-2*d*FARADAY*v/R/(273.15 + celsius))
}

PROCEDURE rate(v (mV), c (mM)) { :callable from hoc
	LOCAL a
	a = alp(v,c)
	otau = 1/(a + bet(v, c))
	oinf = a*otau
}