CA1 pyramidal cells, basket cells, ripples (Malerba et al 2016)

 Download zip file 
Help downloading and running models
Model of CA1 pyramidal layer Ripple activity, triggered when receiving current input (to represent CA3 sharp-waves). Cells are Adaptive-Exponential Integrate and Fire neurons, receiving independent OU noise.
1 . Malerba P, Krishnan GP, Fellous JM, Bazhenov M (2016) Hippocampal CA1 Ripples as Inhibitory Transients. PLoS Comput Biol 12:e1004880 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA1 PV+ fast-firing interneuron;
Gap Junctions:
Receptor(s): GabaA; AMPA;
Simulation Environment: MATLAB;
Model Concept(s): Oscillations; Sleep; Brain Rhythms;
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; GabaA; AMPA;
function [Inoise] = NoiseGenerator(T,dt)
filterfrequency = 100; %Hz, frequencies to filter
% make the time and frequency axis
Tms = T*1000;
t = 0:dt:Tms;
dt_ins = dt/1000;
df = 1/(T+dt_ins);% freq resolution df = 1/(T+dt_ins)
fidx = 1:length(t)/2;% it has to be N/2 pts, where N = length(t) 
faxis = (fidx-1)*df;

%make the phases
Rr = randn(size(fidx));% ~N(0,1) over [-1,1]
distribphases = exp(1i*pi*Rr);% normal distributed phases on the unit circle
%make the amplitudes - filtered
%filterf = sqrt(1./(1+faxis.^2/filterfrequency^2));
filterf = sqrt(1./((2*pi*filterfrequency)^2+(2*pi*faxis).^2)); % see the PSD of an OU process, 
fourierA = distribphases.*filterf; % representation in fourier domain

% make it conj-symmetric so the ifft is real
fourierB = fliplr(conj(fourierA)); 
nss = [0,fourierA,fourierB];
signal = ifft(nss);
if ~isreal(signal)
Inoise = signal;
scaling = std(Inoise);
Inoise = Inoise./scaling;
%trsf = fft(Inoise);
%PS = trsf.*conj(trsf);
%theoPS = 1./((2*pi*filterfrequency)^2+(2*pi*faxis).^2)*(1/scaling)^2;

return% of function