# coding: latin-1
"""
This is a Brian script implementing a benchmark described
in the following review paper:
Simulation of networks of spiking neurons: A review of tools and strategies (2007).
Brette, Rudolph, Carnevale, Hines, Beeman, Bower, Diesmann, Goodman, Harris, Zirpe,
Natschläger, Pecevski, Ermentrout, Djurfeldt, Lansner, Rochel, Vibert, Alvarez, Muller,
Davison, El Boustani and Destexhe.
Journal of Computational Neuroscience 23(3):349-98
Benchmark 3: random network of HH neurons with exponential synaptic conductances
Clock-driven implementation with exponential Euler integration
(no spike time interpolation)
R. Brette - Dec 2007
--------------------------------------------------------------------------------------
Brian is a simulator for spiking neural networks written in Python, developed by
R. Brette and D. Goodman.
http://brian.di.ens.fr
"""
from brian import *
import time
# Parameters
area=20000*umetre**2
Cm=(1*ufarad*cm**-2)*area
gl=(5e-5*siemens*cm**-2)*area
El=-60*mV
EK=-90*mV
ENa=50*mV
g_na=(100*msiemens*cm**-2)*area
g_kd=(30*msiemens*cm**-2)*area
VT=-63*mV
# Time constants
taue=5*ms
taui=10*ms
# Reversal potentials
Ee=0*mV
Ei=-80*mV
we=6*nS # excitatory synaptic weight (voltage)
wi=67*nS # inhibitory synaptic weight
start_time=time.time()
# The model
eqs=Equations('''
dv/dt = (gl*(El-v)+ge*(Ee-v)+gi*(Ei-v)-g_na*(m*m*m)*h*(v-ENa)-g_kd*(n*n*n*n)*(v-EK))/Cm : volt
dm/dt = alpham*(1-m)-betam*m : 1
dn/dt = alphan*(1-n)-betan*n : 1
dh/dt = alphah*(1-h)-betah*h : 1
dge/dt = -ge*(1./taue) : siemens
dgi/dt = -gi*(1./taui) : siemens
alpham = 0.32*(mV**-1)*(13*mV-v+VT)/(exp((13*mV-v+VT)/(4*mV))-1.)/ms : Hz
betam = 0.28*(mV**-1)*(v-VT-40*mV)/(exp((v-VT-40*mV)/(5*mV))-1)/ms : Hz
alphah = 0.128*exp((17*mV-v+VT)/(18*mV))/ms : Hz
betah = 4./(1+exp((40*mV-v+VT)/(5*mV)))/ms : Hz
alphan = 0.032*(mV**-1)*(15*mV-v+VT)/(exp((15*mV-v+VT)/(5*mV))-1.)/ms : Hz
betan = .5*exp((10*mV-v+VT)/(40*mV))/ms : Hz
''')
P=NeuronGroup(4000,model=eqs,\
threshold=EmpiricalThreshold(threshold=-20*mV,refractory=3*ms),\
implicit=True,freeze=True,compile=False)
Pe=P.subgroup(3200)
Pi=P.subgroup(800)
Ce=Connection(Pe,P,'ge')
Ci=Connection(Pi,P,'gi')
Ce.connect_random(Pe, P, 0.02,weight=we)
Ci.connect_random(Pi, P, 0.02,weight=wi)
# Initialization
P.v=El+(randn(len(P))*5-5)*mV
P.ge=(randn(len(P))*1.5+4)*10.*nS
P.gi=(randn(len(P))*12+20)*10.*nS
# Record the number of spikes and a few traces
Me=PopulationSpikeCounter(Pe)
Mi=PopulationSpikeCounter(Pi)
trace=StateMonitor(P,'v',record=[1,10,100])
print "Network construction time:",time.time()-start_time,"seconds"
print "Simulation running..."
run(1*msecond)
start_time=time.time()
run(1000*msecond)
duration=time.time()-start_time
print "Simulation time:",duration,"seconds"
print Me.nspikes,"excitatory spikes"
print Mi.nspikes,"inhibitory spikes"
plot(trace.times/ms,trace[1]/mV)
plot(trace.times/ms,trace[10]/mV)
plot(trace.times/ms,trace[100]/mV)
show()