Olfactory bulb network model of gamma oscillations (Bathellier et al. 2006; Lagier et al. 2007)

 Download zip file 
Help downloading and running models
This model implements a network of 100 mitral cells connected with asynchronous inhibitory "synapses" that is meant to reproduce the GABAergic transmission of ensembles of connected granule cells. For appropriate parameters of this special synapse the model generates gamma oscillations with properties very similar to what is observed in olfactory bulb slices (See Bathellier et al. 2006, Lagier et al. 2007). Mitral cells are modeled as single compartment neurons with a small number of different voltage gated channels. Parameters were tuned to reproduce the fast subthreshold oscillation of the membrane potential observed experimentally (see Desmaisons et al. 1999).
1 . Bathellier B, Lagier S, Faure P, Lledo PM (2006) Circuit properties generating gamma oscillations in a network model of the olfactory bulb. J Neurophysiol 95:2678-91 [PubMed]
2 . Lagier S, Panzanelli P, Russo RE, Nissant A, Bathellier B, Sassoè-Pognetto M, Fritschy JM, Lledo PM (2007) GABAergic inhibition at dendrodendritic synapses tunes gamma oscillations in the olfactory bulb. Proc Natl Acad Sci U S A 104:7259-64 [PubMed]
3 . Bathellier B, Lagier S, Faure P, Lledo PM (2006) Corrigendum for Bathellier et al., J Neurophysiol 95 (4) 2678-2691. J Neurophysiol 95:3961-3962
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell;
Channel(s): I Na,p; I Na,t; I A; I K;
Gap Junctions:
Receptor(s): GabaA;
Simulation Environment: C or C++ program;
Model Concept(s): Oscillations; Delay; Olfaction;
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; GabaA; I Na,p; I Na,t; I A; I K;
const real tbin=0.002;
const real lcorre=0.1;
const real TSTOP=TMAX-0.1;

real Start=0.2;
real DA=0.02;
int Nmax=int(0.01/DT);
int Nmin=int(0.03/DT);

int K,L,Spcount;
int LFPpic1[Nstep];
int tpic[50000];
real Ph;
real Sp, Scos, Ssin, index1, phase, index2, vPsth, mPsth, mLFP1, vLFP1, mLFP2, vLFP2;

int bin=int(tbin/DT);
real Psth[int(TMAX/tbin)];

real autoc[int(lcorre/tbin)];
real autocL[int(lcorre/DT)];
real fitvect[100];
real Maxx, Minn, F0, F1, tau1, F, tau;

real fit(real t[], real tau, real f, int size){
    real s=0; 
    for (int i=0; i<size; i++){
    return s;