Circuits that contain the Model Concept : Influence of Dendritic Geometry

(Dendrite morphologies influence the propagation of electrical and chemical signals; anterograde (towards the soma) and retrograde signals can be amplified, sustained, or inhibited.)
Re-display model names without descriptions
    Models   Description
1. Olfactory bulb mitral cell gap junction NN model: burst firing and synchrony (O`Connor et al. 2012)
In a network of 6 mitral cells connected by gap junction in the apical dendrite tuft, continuous current injections of 0.06 nA are injected into 20 locations in the apical tufts of two of the mitral cells. The current injections into one of the cells starts 10 ms after the other to generate asynchronous firing in the cells (Migliore et al. 2005 protocol). Firing of the cells is asynchronous for the first 120 ms. However after the burst firing phase is completed the firing in all cells becomes synchronous.
2. Olfactory bulb mitral cell: synchronization by gap junctions (Migliore et al 2005)
In a realistic model of two electrically connected mitral cells, the paper shows that the somatically-measured experimental properties of Gap Junctions (GJs) may correspond to a variety of different local coupling strengths and dendritic distributions of GJs in the tuft. The model suggests that the propagation of the GJ-induced local tuft depolarization is a major mechanim for intraglomerular synchronization of mitral cells.

Re-display model names without descriptions