Advanced search
User account
Login
Register
Find models by
Model name
First author
Each author
Find models for
Brain region
Concept
Find models of
Realistic Microcircuits
Connectionist Networks
Temporal integration by stochastic recurrent network (Okamoto et al. 2007)
 
Download zip file
Help downloading and running models
Model Information
Model File
Simulation Platform
Accession:
105501
"Temporal integration of externally or internally driven information is required for a variety of cognitive processes. This computation is generally linked with graded rate changes in cortical neurons, which typically appear during a delay period of cognitive task in the prefrontal and other cortical areas. Here, we present a neural network model to produce graded (climbing or descending) neuronal activity. Model neurons are interconnected randomly by AMPA-receptor–mediated fast excitatory synapses and are subject to noisy background excitatory and inhibitory synaptic inputs. In each neuron, a prolonged afterdepolarizing potential follows every spike generation. Then, driven by an external input, the individual neurons display bimodal rate changes between a baseline state and an elevated firing state, with the latter being sustained by regenerated afterdepolarizing potentials. ..."
Reference:
1 .
Okamoto H, Isomura Y, Takada M, Fukai T (2007) Temporal integration by stochastic recurrent network dynamics with bimodal neurons.
J Neurophysiol
97
:3859-67
[
PubMed
]
Citations
Citation Browser
Model Information
(Click on a link to find other models with that property)
Model Type:
Realistic Network;
Brain Region(s)/Organism:
Neocortex;
Cell Type(s):
Channel(s):
I Calcium;
Gap Junctions:
Receptor(s):
GabaA;
AMPA;
Gene(s):
Transmitter(s):
Simulation Environment:
C or C++ program;
Model Concept(s):
Activity Patterns;
Implementer(s):
Search NeuronDB
for information about:
GabaA
;
AMPA
;
I Calcium
;
/
Okamoto_etal
File not selected
<- Select file from this column.