Activity dependent changes in dendritic spine density and spine structure (Crook et al. 2007)

 Download zip file 
Help downloading and running models
Accession:114342
"... In this work, we extend previous modeling studies [27] by combining a model for activity-dependent spine density with one for calcium-mediated spine stem restructuring. ... Additional equations characterize the change in spine density along the dendrite, the current balance equation for an individual spine head, the change in calcium concentration in the spine head, and the dynamics of spine stem resistance. We use computational studies to investigate the changes in spine density and structure for differing synaptic inputs and demonstrate the effects of these changes on the input-output properties of the dendritic branch. ... "
Reference:
1 . Crook SM, Dur-E-Ahmad M, Baer SM (2007) A model of activity-dependent changes in dendritic spine density and spine structure. Math Biosci Eng 4:617-31 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: MATLAB;
Model Concept(s): Synaptic Plasticity; Synaptic Integration; Calcium dynamics;
Implementer(s):
Search NeuronDB for information about:  AMPA; I Na,t; I K;
/
mbe
readme.html
dmc.m
fig8a.jpg
fig8c.jpg
gsyn.m
MBEv4n4.pdf
run_sp.m
sbf_sp.m
                            
% This program calls the ODE solver to solve the system.
% The spatial discretizaton is determined using the spectral
% method. 

% Initial vector
L=3;
N=32;
sy=8*N;
y = zeros(sy,1);
y(1:N)=0;                        % Vd
y(N+1:2*N)=0;                    % Vsh
y(2*N+1:3*N)=5.01;               % Ca
y(3*N+1:4*N)=750*10^6;           % Rss
y(4*N+1:5*N)=35;                 % nbar

% Initial Vector for the Hodgkin Huxley variables n,m and h

alfn=0.1/(exp(1)-1);
betn=0.125;
alfm=2.5/(exp(2.5)-1);
betm=4;
alfh=0.07;
beth=1/(exp(3)+1);
y(5*N+1:6*N)=alfn/(alfn+betn);   % n
y(6*N+1:7*N)=alfm/(alfm+betm);   % m
y(7*N+1:8*N)=alfh/(alfh+beth);   % h

tic;
[D2,xc]=dmc(N+1,2,L/2);
options = odeset('abstol', 1e-6,'reltol', 1e-4,'maxstep',.6,'stats', 'on');
[t,y]=ode15s(@sbf_sp,[0,2500],y,options,D2,xc);
time=toc

% Show results from figure 8 in the paper
% Plot for a location inside the stimulus region
% for all variables except V_d which is shown 2/3 of
% the way down the cable

% Plot V_sh
figure;
plot(t,y(:,2+2));

% Plot V_d
figure;
plot(t,y(:,N+22));

% Plot Ca
figure;
plot(t,y(:,2*N+2));

% Plot Rss (Scaled)
figure;
plot(t,y(:,3*N+2)/10^6);

% Plot nbar 
figure;
plot(t,y(:,4*N+2));

save figure8  y t;