Reverse-time correlation analysis for idealized orientation tuning dynamics (Kovacic et al. 2008)

 Download zip file 
Help downloading and running models
Accession:117514
"A theoretical analysis is presented of a reverse-time correlation method used in experimentally investigating orientation tuning dynamics of neurons in the primary visual cortex. An exact mathematical characterization of the method is developed, and its connection with the Volterra–Wiener nonlinear systems theory is described. Various mathematical consequences and possible physiological implications of this analysis are illustrated using exactly solvable idealized models of orientation tuning."
Reference:
1 . Kovacic G, Tao L, Cai D, Shelley MJ (2008) Theoretical analysis of reverse-time correlation for idealized orientation tuning dynamics. J Comput Neurosci 25:401-38 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type:
Brain Region(s)/Organism: Neocortex;
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: MATLAB;
Model Concept(s): Methods; Vision;
Implementer(s): Kovacic, Gregor [kovacg at rpi.edu];
clear all;
close all;

load Data/datasii/datasii;
load Data/datasii/datamaxsii;

depths;

strbot=[...
'\nu=',num2str(nu),...
', \alpha=',num2str(alpha),...
', \beta=',num2str(beta),...
', \tau_{LGN} =',num2str(T),...
', \sigma_{LGN}=',num2str(sigma),...
', \tau_E=',num2str(taue),...
', \sigma_E=',num2str(ae),...
', \tau_I=',num2str(taui),...
', \sigma_I=',num2str(ai),...
', s_{EE}=',num2str(see),...%', s_{EI}=',num2str(sei),...
', s_{IE}=',num2str(sie),...%', s_{II}=',num2str(sii)...
];
n=1:N-10;
r=1:N-10;
figure(10)
axes('fontsize',24);
plot(paramt(n),bote(n),'k','LineWidth',4);
axis([3 20 -0.35 -0.1]);
hold
plot(paramt(r),boti(r),'k --','LineWidth',4);
xlabel({' ','\fontname{times}\fontsize{34}\it S_{EI}=S_{II}'});
ylabel('\Delta{\it M}/{\it M}_{max}','fontname','times', 'fontsize', 34);
%ylabel('[{\it M}({\it t}_{min},\theta_{min})-{\it M}({\it t}_{min},\pi/2)]/{\it M}_{max}',...
%'fontname','times', 'fontsize', 34);
%title({strtop,strmed,strbot});
legend('\fontname{times}\fontsize{34}{\it M_E}',...
'\fontname{times}\fontsize{34}{\it M_I}','Location','NorthEast');
hold off