Complex CA1-neuron to study AP initiation (Wimmer et al. 2010)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:123927
Complex model of a pyramidal CA1-neuron, adapted from Royeck, M., et al. Role of axonal NaV1.6 sodium channels in action potential initiation of CA1 pyramidal neurons. Journal of neurophysiology 100, 2361-2380 (2008). It contains a biophysically realistic morphology comprising 265 compartments (829 segments) and 15 different distributed Ca2+- and/or voltage-dependent conductances.
Reference:
1 . Wimmer VC, Reid CA, Mitchell S, Richards KL, Scaf BB, Leaw BT, Hill EL, Royeck M, Horstmann MT, Cromer BA, Davies PJ, Xu R, Lerche H, Berkovic SF, Beck H, Petrou S (2010) Axon initial segment dysfunction in a mouse model of genetic epilepsy with febrile seizures plus. J Clin Invest 120:2661-71 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I N; I T low threshold; I p,q; I A; I K; I K,leak; I M; I h; I K,Ca; I Calcium;
Gap Junctions:
Receptor(s):
Gene(s): Nav SCN1B;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Detailed Neuronal Models; Epilepsy;
Implementer(s): Horstmann, Marie-Therese [mhorstma at uni-bonn.de];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; I Na,p; I Na,t; I L high threshold; I N; I T low threshold; I p,q; I A; I K; I K,leak; I M; I h; I K,Ca; I Calcium;
TITLE na3
: Na current 
: modified from Jeff Magee. M.Migliore may97
: added sh to account for higher threshold M.Migliore, Apr.2002

NEURON {
	SUFFIX na3Mig
	USEION na READ ena WRITE ina
	RANGE  gbar, ar2, sh, thegna
	GLOBAL minf, hinf, mtau, htau, sinf, taus,qinf, thinf
}

PARAMETER {
	sh   = 8	(mV)
	gbar = 0.010   	(mho/cm2)	
								
	tha  =  -30	(mV)		: v 1/2 for act	
	qa   = 7.2	(mV)		: act slope (4.5)		
	Ra   = 0.4	(/ms)		: open (v)		
	Rb   = 0.124 	(/ms)		: close (v)		

	thi1  = -45	(mV)		: v 1/2 for inact 	
	thi2  = -45 	(mV)		: v 1/2 for inact 	
	qd   = 1.5	(mV)	        : inact tau slope
	qg   = 1.5      (mV)
	mmin=0.02	
	hmin=0.5			
	q10=2
	Rg   = 0.01 	(/ms)		: inact recov (v) 	
	Rd   = .03 	(/ms)		: inact (v)	
	qq   = 10        (mV)
	tq   = -55      (mV)

	thinf  = -50 	(mV)		: inact inf slope	
	qinf  = 4 	(mV)		: inact inf slope 

        vhalfs=-60	(mV)		: slow inact.
        a0s=0.0003	(ms)		: a0s=b0s
        zetas=12	(1)
        gms=0.2		(1)
        smax=10		(ms)
        vvh=-58		(mV) 
        vvs=2		(mV)
        ar2=1		(1)		: 1=no inact., 0=max inact.
	ena		(mV)	
	Ena = 55	(mV)            : must be explicitly def. in hoc
	celsius
	v 		(mV)
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ina 		(mA/cm2)
	thegna		(mho/cm2)
	minf 		hinf 		
	mtau (ms)	htau (ms) 	
	sinf (ms)	taus (ms)
}
 

STATE { m h s}

BREAKPOINT {
        SOLVE states METHOD cnexp
        thegna = gbar*m*m*m*h*s
	ina = thegna * (v - Ena)
} 

INITIAL {
	trates(v,ar2,sh)
	m=minf  
	h=hinf
	s=sinf
}


FUNCTION alpv(v(mV)) {
         alpv = 1/(1+exp((v-vvh-sh)/vvs))
}
        
FUNCTION alps(v(mV)) {  
  alps = exp(1.e-3*zetas*(v-vhalfs-sh)*9.648e4/(8.315*(273.16+celsius)))
}

FUNCTION bets(v(mV)) {
  bets = exp(1.e-3*zetas*gms*(v-vhalfs-sh)*9.648e4/(8.315*(273.16+celsius)))
}

LOCAL mexp, hexp, sexp

DERIVATIVE states {   
        trates(v,ar2,sh)      
        m' = (minf-m)/mtau
        h' = (hinf-h)/htau
        s' = (sinf - s)/taus
}

PROCEDURE trates(vm,a2,sh2) {  
        LOCAL  a, b, c, qt
        qt=q10^((celsius-24)/10)
	a = trap0(vm,tha+sh2,Ra,qa)
	b = trap0(-vm,-tha-sh2,Rb,qa)
	mtau = 1/(a+b)/qt
        if (mtau<mmin) {mtau=mmin}
	minf = a/(a+b)

	a = trap0(vm,thi1,Rd,qd) : +sh2 raus
	b = trap0(-vm,-thi2,Rg,qg) : - sh2 raus
	htau =  1/(a+b)/qt
        if (htau<hmin) {htau=hmin}
	hinf = 1/(1+exp((vm-thinf)/qinf)): -sh2 raus
	c=alpv(vm)
        sinf = c+a2*(1-c)
        taus = bets(vm)/(a0s*(1+alps(vm)))
        if (taus<smax) {taus=smax}
}

FUNCTION trap0(v,th,a,q) {
	if (fabs(v-th) > 1e-6) {
	        trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
	} else {
	        trap0 = a * q
 	}
}