Balance of excitation and inhibition (Carvalho and Buonomano 2009)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:125689
" ... Here, theoretical analyses reveal that excitatory synaptic strength controls the threshold of the neuronal input-output function, while inhibitory plasticity alters the threshold and gain. Experimentally, changes in the balance of excitation and inhibition in CA1 pyramidal neurons also altered their input-output function as predicted by the model. These results support the existence of two functional modes of plasticity that can be used to optimize information processing: threshold and gain plasticity."
Reference:
1 . Carvalho TP, Buonomano DV (2009) Differential effects of excitatory and inhibitory plasticity on synaptically driven neuronal input-output functions. Neuron 61:774-85 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Synaptic Integration;
Implementer(s):
//----------------------------------------------------------------------------
//  load define general NEURON menus
//----------------------------------------------------------------------------

xopen("$(NEURONHOME)/lib/hoc/noload.hoc") // avoid time to search with load_proc
//nrnmainmenu()                                                                           // create main menu
//nrncontrolmenu()                                                                        // crate control menu

//----------------------------------------------------------------------------
//  load TEMPLATE files
//----------------------------------------------------------------------------

xopen("./cellsIAF.template")                    // load template for RE cell

//----------------------------------------------------------------------------
//  define basic NEURON and RUN parameters
//----------------------------------------------------------------------------

dt=0.05		
tstop = 25           
runStopAt = tstop
steps_per_ms = 10
celsius = 36
v_init = -60
trial = 1                                                                       // dummy variable used in PARAM.oc



//----------------------------------------------------------------------------
//  NETWORK PARAMETERS
//----------------------------------------------------------------------------

// NUMBER OF CELLS
nEx = 21                      
nInh = 10                   

ExINPUT = 20			// cutoff so only some Ex cells receive input
ExINPUT_block_size = 1	// nr of inputs that will be increasingly firing till ExINPUT
ExINPUT_end = 20

InhINPUT = 0         

// NUMBER OF SYNAPSES onto post
nEx_Ex  = ExINPUT              
nEx_Inh = ExINPUT                
nInh_Ex = nInh               

// TOTAL SYNAPTIC INPUT FOR INITIAL CONDITIONS (AVERAGE)
//print "Dividing total synaptic strength onto Ex neuron by number of input fibers"
totEx_Ex        = 0.000     // Changed before run in synspace.oc  
totEx_Inh       = 0.008				    
totInh_Ex       = 0.000		// Changed before run in synspace.oc		


AmpaMaxExEx  = 0.00         
AmpaMaxExInh = 0.00         
GabaMax      = 0.00          
AMPANMDARATIO_EPlasSyn = 0 


gainLTP_EPlasSyn = 0.005           
gainLTD_EPlasSyn = 0.005         
tauLTP_EPlasSyn=10
tauLTD_EPlasSyn=20

gainLTP_IPlasSyn = 0.01           
gainLTD_IPlasSyn = 0.01        
tauLTP_IPlasSyn=20
tauLTD_IPlasSyn=20

//TARGET 'Ca' LEVELS//
SetCaEx = 1
SetCaInh = 1

GainConst_ExIAF = 0.1     // 0.1	Learning rate (ExIAF.mod)
GainConst_InhIAF = 0.1    // 0.1
//----------------------------------------------------------------------------
//  MAKE CELLS andd SYNAPTOGENESIS
//----------------------------------------------------------------------------

xopen("./SYNAPTOGENESIS.oc")


CHANGE_W()	// Sets INITIAL synaptic weights



//----------------------------------------------------------------------------
//  FILES
//----------------------------------------------------------------------------

xopen("FILES.oc")

	
objectvar fileV	// for some reason this has to stay out of the IF statment...
if (WRITE_VOLTAGE_FILE) {	
	fileV = new File()
	fileV.wopen("voltage.dat")
}

//----------------------------------------------------------------------------
//  GRAPHICS
//----------------------------------------------------------------------------
xopen("./GRAPHICS.oc")
//xopen("GRAPHICSSMALL.oc")

// I will have a bunch of 0 and 1's printed now

if (GRAPHICS) {

//	xopen("graph_wnds.ses")
print "Start GRAPHICS (network.oc)\n"

    addgraph("Ex[0].soma.v", -80,500, 555,0,400,150)	// -80 = ystart coordinates; 300 = yend coordinates
    strdef dummystr
    for (i=1;i<nEx;i=i+1) {


	    sprint(dummystr,"Ex[%d].soma.v+%d*20",i,i)
            color=i%5 + 2
            addline(0,dummystr,color)
    }


    addgraph("Inh[0].soma.v",-80,300, 555,260,400,150)
    for (i=1;i<nInh;i=i+1) {
            sprint(dummystr,"Inh[%d].soma.v+%d*20",i,i)
            color=i%5 + 2
            addline(1,dummystr,color)
    }



}  // end if (GRAPHICS)


//----------------------------------------------------------------------------
//  RUN-TIME PROCESSES
//----------------------------------------------------------------------------
objref v_trace
v_trace = new Vector(tstop/dt) // Array that will hold the voltage, so that slope can be computed without needing to plot
double Exflag[nEx]
double Inhflag[nInh]
proc init() {
 for (i=0;i<nEx;i=i+1)  { 
 //i = 1
 Exflag[i] = 1 
 }
  for (i=0;i<nInh;i=i+1) { Inhflag[i] = 1 }

  tstop_ExIAF = tstop
  tstop_InhIAF = tstop

  finitialize(v_init)
  fcurrent()
}


proc advance() {

	// To compute slope the voltage trace needs to be stored in a VECTOR
	if (COMPUTE_SLOPE) {
		//v_trace.x[t/dt] = Ex[ExINPUT].soma.v
		v_trace.x[t/dt] = Ex[ExINPUT].soma.v
	}

	if (WRITE_RASTER_FILE) {
        //FIND CELLS THAT SPIKED, finds the offset of spike (gON)
        for (i=0;i<nEx;i=i+1) {
                if (Exflag[i]) {
                if (Ex[i].soma.gON_ExIAF == 1) {Exflag[i] = 0}    //reset flag to 0
                } else {
                if (Ex[i].soma.gON_ExIAF == 0) {
                        Exflag[i] = 1
                                //print"Ex=",i,">>>>>",t,"ms"
                                //if (FILE) {fraster.printf(" %4d %4d %5.3g\n",trial,i,t) }
                                fraster.printf(" %4d %4d %5.3g\n",trial,i,t)
                }
                }
        }
        for (i=0;i<nInh;i=i+1) {
                if (Inhflag[i]) {
                if (Inh[i].soma.gON_InhIAF == 1) {Inhflag[i] = 0}         //reset flag to 0
                } else {
                if (Inh[i].soma.gON_InhIAF == 0) {
                        Inhflag[i] = 1
                                //print"Inh=",i,">>>>>",t,"ms"
                                //if (FILE) {fraster.printf(" %4d %4d %5.3g\n",trial,nEx+i,t) }
                                fraster.printf(" %4d %4d %5.3g\n",trial,nEx+i,t)
                }
                }
        }
		}

		if (WRITE_VOLTAGE_FILE) {

//			if (t%1<dt/2 || t%1>1-dt/2) {
//				for (i=0;i<nEx;i=i+1) {
//					fileV.printf(" %4d %5.3g %5.3g\n",trial,Ex[i].soma.v,t)
//				}
//				for (i=0;i<nInh;i=i+1) {
//					fileV.printf(" %4d %5.3g %5.3g\n",trial,Inh[i].soma.v,t)
//				}
				// Writes only for Ex Cell, all time steps!!
				fileV.printf("%5.3g\t%4.4g\n", Ex[ExINPUT].soma.v, t)

//			}
		}



        /////////////////////////// UPDATE MOD FILES //////////////////////////////
        fadvance()
}                                               // end advance()