Superior paraolivary nucleus neuron (Kopp-Scheinpflug et al. 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:139657
This is a model of neurons in the brainstem superior paraolivary nucleus (SPN), which produce very salient offset firing during sound stimulation. Rebound offset firing is triggered by IPSPs coming from the medial nucleus of the trapezoid body (MNTB). This model shows that AP firing can emerge from inhibition through integration of large IPSPs, driven by an extremely negative chloride reversal potential, combined with a large hyperpolarization- activated non-specific cationic current (IH), with a secondary contribution from a T-type calcium conductance (ITCa). As a result, tiny gaps in sound stimuli of just 3-4ms can elicit reliable APs that signal such brief offsets.
Reference:
1 . Kopp-Scheinpflug C, Tozer AJ, Robinson SW, Tempel BL, Hennig MH, Forsythe ID (2011) The sound of silence: ionic mechanisms encoding sound termination. Neuron 71:911-25 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Superior paraolivary nucleus neuron;
Channel(s): I T low threshold; I h;
Gap Junctions:
Receptor(s): Glycine;
Gene(s): HCN Cnga1;
Transmitter(s): Glycine;
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Action Potentials; Rebound firing;
Implementer(s): Hennig, Matthias H [mhhennig at gmail.com];
Search NeuronDB for information about:  Glycine; I T low threshold; I h; Glycine;
/
Kopp-Scheinpflug2011
index.html
readme.txt
ht.mod *
lt.mod *
lva.mod
mhh_Gfluct.mod
netstims.mod *
sjg_ih.mod
sjg_na.mod
trigstim.mod *
allgraphs.hoc
conductance_noise.hoc
current_inj.hoc
mosinit.hoc
run_spn_model.hoc
simcontrols.hoc
spn_neuron.hoc
spnmodel1.png
synapses.hoc
                            
// SPN neuron model
// ---------------------------------------------
//
// This model simulates rebound action potential firing in SPN neurons
// following prolonged inhibition from the MNTB.
//
// Reference:
// The Sound of Silence: ionic mechanisms encoding sound termination.
// Cornelia Kopp-Scheinpflug, Adam JB Tozer, Susan W Robinson
// Bruce L Tempel, Matthias H Hennig and Ian D Forsythe
// Neuron, in press (2011)
//
// Contact:
// Matthias H. Hennig, University of Edinburgh, 2011
// m.hennig@ed.ac.uk
// mhhennig@gmail.com
//
// with contributions from:
// Sarah J. Griffin, MRC Toxicology Unit, Leicester

// create the model SPN neuron
// ---------------------------------------------

lstd = 20

create soma
soma	{
    nseg=1 
    diam=lstd 
    L=lstd 
    
    insert pas 
    
    insert sjg_na
    insert HT
    insert LT
    insert sjg_ih
    insert lva
    
    cm = 1.5 //2
    ek = -90
    ena = 55
}

access soma

// Coductances
// ---------------------------------------------

// helper functions to:
// convert from nanosiemens to mho/cm2.
func nstomho() {
    return ($1/area(0.5)*1E8*1E-9)
}
// convert from mho/cm2 to nanosiemens.
func mhotons() {
    return ($1*area(0.5)*1E-8*1E9)
}

celsius=37

// linear leak
g_pas = 0.00018
e_pas = -90

// Na+
gnabar_sjg_na = 0.055
sjgena_sjg_na = 55
usetable_sjg_na = 0

// KVs
gbar_LT = 0.0023
gbar_HT = 0.028

// Ih
usetable_sjg_ih = 0
ghbar_sjg_ih = 0.015

// LVA Ca++
gbar_lva = 0.0025
Erev_lva = 120
V_s_lva = 0

// print a summary of the parameters
printf("soma area: %g um*um\n",area(0.5))
printf("leak: %g nS\n",mhotons(g_pas))
printf("Na++: %g nS\n",mhotons(gnabar_sjg_na))
printf("LT: %g nS\n",mhotons(gbar_LT))
printf("HT: %g nS\n",mhotons(gbar_HT))
printf("Ih: %g nS\n",mhotons(ghbar_sjg_ih))
printf("LVA: %g nS\n",mhotons(gbar_lva))
printf("cap: %g pF\n",area(0.5)*1E-8*cm/1E-6)