STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144523
"... We use a conductance-based model of a CN neuron to study the effect of the regularity of Purkinje cell spiking on CN neuron activity. We find that increasing the irregularity of Purkinje cell activity accelerates the CN neuron spike rate and that the mechanism of this recoding of input irregularity as output spike rate depends on the number of Purkinje cells converging onto a CN neuron. ..."
Reference:
1 . Luthman J, Hoebeek FE, Maex R, Davey N, Adams R, De Zeeuw CI, Steuber V (2011) STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron. Cerebellum 10:667-82 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Cerebellum deep nucleus neuron;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I K; I h; I K,Ca;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Temporal Pattern Generation; Short-term Synaptic Plasticity;
Implementer(s): Luthman, Johannes [jwluthman at gmail.com];
Search NeuronDB for information about:  I Na,p; I Na,t; I L high threshold; I T low threshold; I K; I h; I K,Ca;
/
LuthmanEtAl2011
readme.txt
CaConc.mod *
CaHVA.mod *
CalConc.mod *
CaLVA.mod *
DCNsyn.mod *
DCNsynGABA.mod *
DCNsynNMDA.mod *
fKdr.mod *
GammaStim.mod *
h.mod *
NaF.mod *
NaP.mod *
pasDCN.mod *
SK.mod *
sKdr.mod *
TNC.mod *
DCN_mechs.hoc
DCN_morph.hoc *
DCN_recording.hoc
DCN_run.hoc
DCN_simulation.hoc
mosinit.hoc
OutputDCN_soma_1s_ap.dat
OutputDCN_soma_1s_time.dat
OutputDCN_soma_1s_trace.dat
                            
TITLE Intracellular calcium concentration from the CaLVA channel in deep cerebellar nucleus (DCN) neuron
COMMENT
    This mechanism keeps track of intracellular calcium entering the cell through
    the CaLVA channel, with the sole purpose of setting the conductance of the 
    channel which uses the GHK equation to calculate current flow.
    
    The mechanism is a copy of the CaConc.mod and thus uses the same method of
    tracking Ca concentration merely in a hypothetical shell below the membrane
    of the cell.
ENDCOMMENT

NEURON {
    SUFFIX CalConc
    USEION cal READ ical WRITE cali VALENCE 2    
    RANGE cali, kCal, depth
    GLOBAL tauCal
}

UNITS {
    (molar) = (1 / liter)
    (mM) = (millimolar)
    (mV) = (millivolt)
    (mA) = (milliamp)
    PI = (pi) (1)
}

PARAMETER {
    : qdeltat has been skipped here and is used via the division of this NMODL's
    : tauCal when it's inserted (in hoc).

    : kCa in the following is given for the soma and shall be adjusted
    : from hoc when the CaConc model is inserted in a dendrite: 1.04e-6
    : in the dendritic compartments units. kCa is here given as 1 / coulombs
    : instead of moles / coulomb as in the GENESIS code since mole
    : in NEURON simply equals the number 6.022 * 10e23
    kCal = 3.45e-7 (1/coulomb)
    tauCal = 70 (ms)
    caliBase = 50e-6 (mM) : the resting intracellular calcium conc =50 nM
    depth = 0.2 (micron)
}

ASSIGNED {
    C (kilo / m3 / s)
    D (kilo / m3 / s)
    ical (mA/cm2)
}

STATE {
    cali (mM)
}

INITIAL {
    cali = caliBase
}

BREAKPOINT {
    SOLVE states METHOD cnexp
}

DERIVATIVE states {
    C = (cali - caliBase) / tauCal
	D = - kCal / depth * ical * (1e4)
    cali' = D - C
}