Model of arrhythmias in a cardiac cells network (Casaleggio et al. 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:150691
" ... Here we explore the possible processes leading to the occasional onset and termination of the (usually) non-fatal arrhythmias widely observed in the heart. Using a computational model of a two-dimensional network of cardiac cells, we tested the hypothesis that an ischemia alters the properties of the gap junctions inside the ischemic area. ... In conclusion, our model strongly supports the hypothesis that non-fatal arrhythmias can develop from post-ischemic alteration of the electrical connectivity in a relatively small area of the cardiac cell network, and suggests experimentally testable predictions on their possible treatments."
Reference:
1 . Casaleggio A, Hines ML, Migliore M (2014) Computational model of erratic arrhythmias in a cardiac cell network: the role of gap junctions. PLoS One 9:e100288 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Cardiac ventricular cell;
Channel(s): I K; I Sodium; I Calcium; I Potassium;
Gap Junctions: Gap junctions;
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Spatio-temporal Activity Patterns; Detailed Neuronal Models; Action Potentials; Heart disease; Conductance distributions;
Implementer(s): Hines, Michael [Michael.Hines at Yale.edu]; Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  I K; I Sodium; I Calcium; I Potassium;
TITLE Cardiac L-type Calcium channel
: from BEELER & REUTER, J.Physiol, 1977

NEURON {
    THREADSAFE
	SUFFIX Is
	USEION ca READ cai WRITE ica

	USEION cs WRITE ics VALENCE 2
	USEION ns WRITE ins VALENCE 2

	RANGE gsbar, ica, ics
	GLOBAL minf, ninf, mtau, ntau
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(mM) = (milli/liter)
	(S) = (siemens)
}

PARAMETER {
	gsbar= 5e-05(S/cm2) <0,1e9> 
}

STATE { : d f
	m n
}

ASSIGNED {
	v (mV)
	celsius (degC) : 37
	cai (mM)
	ica (mA/cm2)
	ics (mA/cm2)
	ins (mA/cm2)
	minf ninf
	mtau (ms)
	ntau (ms)
	lca
}


INITIAL {
	rates(v)
	m = minf
	n = ninf
}

BREAKPOINT {
LOCAL Es
SOLVE states METHOD derivimplicit
	Es = -82.3-13.0287*log(cai)
	ics = gsbar*m*n*(v - Es)
	ica = ics
	ins = -ics
}

DERIVATIVE states {
	rates(v)
	m' = (minf - m)/mtau
	n' = (ninf - n)/ntau
}

UNITSOFF
FUNCTION alp(v(mV),i) (ms) { 
	if (i==0) {
		alp = 0.095*exp(-0.01*(v - 5))/(exp(-0.072*(v - 5))+1)
	}else if (i==1){
		alp = 0.012*exp(-0.008*(v + 28))/(exp(0.15*(v + 28))+1)
	}
}

FUNCTION bet(v(mV),i) { 
	if (i==0) {
		bet = 0.07*exp(-0.017*(v + 44))/(exp(0.05*(v + 44))+1)
	}else if (i==1){
		bet = 0.0065*exp(-0.02*(v + 30))/(exp(-0.2*(v + 30))+1)
	}
}

UNITSON
PROCEDURE rates(v(mV))
{
LOCAL a, b
:TABLE minf, ninf, mtau, ntau DEPEND celsius FROM -100 TO 100 WITH 200
	a = alp(v,0)  b=bet(v,0)
	mtau = 1/(a + b)
	minf = a/(a + b)
	a = alp(v,1)  b=bet(v,1)
	ntau = 1/(a + b)
	ninf = a/(a + b)
}