Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)

 Download zip file 
Help downloading and running models
Accession:153574
A detailed network model of the dual-layer dendro-dendritic inhibitory microcircuits in the rat olfactory bulb comprising compartmental mitral, granule and PG cells developed by Aditya Gilra, Upinder S. Bhalla (2015). All cell morphologies and network connections are in NeuroML v1.8.0. PG and granule cell channels and synapses are also in NeuroML v1.8.0. Mitral cell channels and synapses are in native python.
Reference:
1 . Gilra A, Bhalla US (2015) Bulbar microcircuit model predicts connectivity and roles of interneurons in odor coding. PLoS One 10:e0098045 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I A; I h; I K,Ca; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: Python; MOOSE/PyMOOSE;
Model Concept(s): Sensory processing; Sensory coding; Markov-type model; Olfaction;
Implementer(s): Bhalla, Upinder S [bhalla at ncbs.res.in]; Gilra, Aditya [aditya_gilra -at- yahoo -period- com];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell; AMPA; NMDA; Gaba; I A; I h; I K,Ca; I Sodium; I Calcium; I Potassium; Gaba; Glutamate;
# -*- coding: utf-8 -*-
# ALL SI UNITS
# milliMolar is same as mol/m^3

## USAGE: nohup python2.6 activdep_inhibition_converge.py &> nohup_adiconv.out < /dev/null &
## if running multiple of these, change adi to adi1, adi2, etc above,
## change loop lists to result in largely non-overlapping runs or opposite order,
## change the ADIproc command to have adi1, adi2, etc unique str.
## also have different netseed below, to ensure that the output ADI result files do not have the same name.

import os,sys
import os.path
import pickle
import subprocess
cwd = os.getcwd() # current working directory
from pylab import *
from scipy import optimize

from lock_utils import *

IN_VIVO = False
directed = False
frac_directed = 0.05 # for activity dependent inhibition, only geometric connectivity
NONLINEAR_ORNS = False
reverse = False

mit_distance = 50.0
netseed = 200.0

mitral_granule_AMPA_Gbar_init = 0.35e-9 # Siemens ## ~=8mV EPSP, near 12mV EPSP of Trombley & Shepherd 1992 JNeurosci
granule_mitral_GABA_Gbar_init = 15e-9#15e-9#2e-9 # Siemens
self_mitral_GABA_Gbar_init = 50e-12 # Siemens
mitB_current_init = 1500e-12 # A

global iternum

def chisq_ADI(params):
    mitral_granule_AMPA_Gbar = params[0]
    granule_mitral_GABA_Gbar = params[1]
    self_mitral_GABA_Gbar = params[2]
    mitB_current = params[3]
    print "Trying params mitral_granule_AMPA_Gbar, granule_mitral_GABA_Gbar,"\
        "self_mitral_GABA_Gbar, mitB_current",params
    
    files_locked = True     # files have started to be opened for this iteration
                            # made False, once simulation is loaded and files closed
    ## a special lock file to keep track of locking,
    ## since portalocker didn't work properly with multiple files
    print "Acquiring Lock for ADI."
    sys.stdout.flush()
    #mylock('locksimfile.txt','ADI\n')
    lock_file = portalock_open('locksimfile.txt')
    print "Locked files for ADI."
    sys.stdout.flush()

    gen_file = open('../generators/stimuliConstantsMinimal.py','w') # blank file created
    gen_file.write('## This file is programmatically generated.\n')
    gen_file.write('\n')
    gen_file.write('## used by generate_firerates.py\n')
    gen_file.write('stim_rate_seednum = 1000.0#441.0#212.0#191.0\n')
    gen_file.write('## used by generate_neuroml.py\n')
    gen_file.write('stim_net_seed = '+str(netseed)+'\n')
    gen_file.write('## distance between 2 mitrals for activity dependent inhibition\n')
    gen_file.write('mit_distance = '+str(mit_distance)+' # microns\n')
    gen_file.write('## use thresholded erf() on ORN firing rate?\n')
    gen_file.write('NONLINEAR_ORNS = '+str(NONLINEAR_ORNS)+'\n')
    gen_file.close()

    net_file = open('../networks/networkConstantsMinimal.py','w') # blank file created    
    net_file.write('## actual number of modelled gloms could be 10 (for odor testing)\n')
    net_file.write('## or 2 (for inhibition testing) decided during neuroml generation.\n')
    net_file.write('## can set number of modelled glom to whatever you like.\n')
    net_file.write('## Randomly half of them will lie on central glom\'s mit0 or mit1.\n')
    net_file.write('## First half will receive odor A. Rest will receive odor B.\n')
    net_file.write('NUM_GLOMS = 2\n')
    net_file.write('\n')
    net_file.write('## Whether FRAC_DIRECTED of mits_per_syns will be\n')
    net_file.write('## connected between pairs listed in DIRECTED_CONNS.\n')
    net_file.write('## Keep directed True for simulating odors,\n')
    net_file.write('## Even for ADI, choose two connected mitrals.\n')
    net_file.write('directed = '+str(directed)+'\n')
    net_file.write('\n')
    net_file.write('## ensure that FRAC_DIRECTED * num of mitrals directed < 1.\n')
    net_file.write('## For NUM_GLOMS=10, 20mits all connected to mit0, FRAC_DIRECTED < 0.05.\n')
    net_file.write('## Can set FRAC_DIRECTED to 0.0 keeping DIRECTED=True. This will ensure that\n')
    net_file.write('## other mits lat dends are over directed centralmit\'s soma, if PROXIMAL_CONNECTION = True\n')
    net_file.write('frac_directed = '+str(frac_directed))
    net_file.write(' # I think you need to set this to 0.05 to get reasonable phase separation?\n')
    net_file.close()

    net_file = open('../synapses/synapseConstantsMinimal.py','w') # blank file created    
    net_file.write('## This file is programmatically generated for converging to best fit Activity Dependent Inhibition curve.\n\n')
    net_file.write('mitral_granule_AMPA_Gbar = '+str(mitral_granule_AMPA_Gbar)+' # Siemens\n')
    net_file.write('granule_mitral_GABA_Gbar =  '+str(granule_mitral_GABA_Gbar)+'# Siemens\n')
    net_file.write('self_mitral_GABA_Gbar = '+str(self_mitral_GABA_Gbar)+' # Siemens\n')
    net_file.close()

    OBNet_file = '../netfiles/syn_conn_array_10000_singlesclubbed20_jointsclubbed1'\
        '_numgloms2_seed'+str(netseed)+"_mitdist"+str(mit_distance)
    if directed: OBNet_file += '_directed'+str(frac_directed)+'_proximal'
    OBNet_file += '_2GLOMS'
    if not IN_VIVO: OBNet_file += '_INVITRO.xml'
    else: OBNet_file += '.xml'
    if not os.path.exists(OBNet_file):
        print "Generating netfile",OBNet_file
        gen_command = 'python2.6 '+cwd+'/../generators/generate_neuroML.py 2GLOMS'
        if not IN_VIVO:
            gen_command += ' INVITRO'
        subprocess.check_call(gen_command,shell=True)
    else:
        print "Netfile",OBNet_file,"already exists."

    simset_file = open('simset_activinhibition_minimal.py','w') # blank file created
    simset_file.write('## This file is programmatically generated.\n')
    simset_file.write('\n')
    simset_file.write('netseedstr = "'+str(netseed)+'"\n')
    simset_file.write('mitdistance = '+str(mit_distance)+' # microns\n')
    simset_file.write('mitdistancestr = "_mitdist'+str(mit_distance)+'" # microns\n')
    simset_file.write('\n')
    simset_file.write('## When testing ADI (ASYM_TEST = False),'\
        ' fixed current in mitB to generate 80Hz. 1mM Mg++.\n')
    simset_file.write('## When testing asymmetry in inhibition (ASYM_TEST=True),'\
        ' same currents in mitA and mitB, and 0.2mM Mg++.\n')
    simset_file.write('ASYM_TEST = False\n')
    simset_file.write('## reverse roles of mitA and mitB in activity dependent inhibition\n')
    simset_file.write('REVERSED_ADI = '+str(reverse)+'\n')
    simset_file.write('IN_VIVO = '+str(IN_VIVO)+'\n')
    simset_file.write('oninject_ext = '+str(mitB_current)+' # A \n')
    simset_file.close()

    ## activdep_inhibition.py checks if the output files exists
    ## if there is already an output file, it quits.
    ## NOSHOW is for not showing plots, adi/adi2 is uniquestr
    ## for running multiple parallel activdep_inhibition_repeats.py.
    ADIproc = subprocess.Popen('mpiexec -machinefile ~/hostfile -n 61'\
        ' ~/Python-2.6.4/bin/python2.6 activdep_inhibition.py NOSHOW adiconv',\
        shell=True,stdout=subprocess.PIPE)
    while True:
        next_line = ADIproc.stdout.readline()
        if not next_line:
            break
        ## don't write each line!
        #sys.stdout.write(next_line)
        if files_locked and ('Loading' in next_line):
            ## now that the simulation has loaded,
            ## unlock files for the other process.
            ## only if files are locked still,
            ## else redundant since 'Loading' appears multiple times
            #myunlock('locksimfile.txt')
            portalocker.unlock(lock_file)
            lock_file.close()
            files_locked = False # files are closed now
            sys.stdout.write(next_line)
            print "UnLocked files for ADI."
        if 'Wrote' in next_line:
            sys.stdout.write(next_line)
            ADIfilename = next_line.split()[1]
            break
    ## read whatever remains of the process, but no need to print it
    ADIproc.communicate()
    ## unlock in case files are locked even after odor_morphs quits.
    if files_locked:
        #myunlock('locksimfile.txt')
        portalocker.unlock(lock_file)
        lock_file.close()
        print "UnLocked files for ADI after quit."

    f = open(ADIfilename,'r')
    Ainjectarray, both_firingratearrays = pickle.load(f)
    f.close()
    mit_alone = array(both_firingratearrays[0])
    mit_inhibited = array(both_firingratearrays[1])
    ## low end points
    low_pts = where(Ainjectarray<=0.5e-9)
    diff_frates = mit_alone[low_pts] - mit_inhibited[low_pts]
    avg_low_redux = mean(diff_frates)
    ## mid points1
    mid_pts = where((Ainjectarray>0.5e-9) & (Ainjectarray<=1.0e-9))
    diff_frates = mit_alone[mid_pts] - mit_inhibited[mid_pts]
    avg_mid1_redux = mean(diff_frates)
    ## mid points2
    mid_pts = where((Ainjectarray>1.0e-9) & (Ainjectarray<=1.5e-9))
    diff_frates = mit_alone[mid_pts] - mit_inhibited[mid_pts]
    avg_mid2_redux = mean(diff_frates)
    ## mid points3
    mid_pts = where((Ainjectarray>1.5e-9) & (Ainjectarray<=2.0e-9))
    diff_frates = mit_alone[mid_pts] - mit_inhibited[mid_pts]
    avg_mid3_redux = mean(diff_frates)
    ## high points
    high_pts = where(Ainjectarray>2.0e-9)
    diff_frates = mit_alone[high_pts] - mit_inhibited[high_pts]
    avg_high_redux = mean(diff_frates)
    ## remove the file since we'll iterate again, and ADI process will quit if resultfile exists.
    subprocess.check_call('rm '+ADIfilename,shell=True)

    global iternum
    iternum += 1
    print 'Iteration : ',iternum
    chisqarray = [avg_low_redux,avg_mid1_redux-3.0,avg_mid2_redux-10.0,avg_mid3_redux-3.0,avg_high_redux]
    print "Difference between fitted and desired inh reduxes =",chisqarray
    sys.stdout.flush()
    return chisqarray

#########
## leastsq() uses a modified version of Levenberg-Marquardt algorithm
## it optimizes M equations in N unknowns, where M>=N.
## Hence chisqfunc must return M numbers in an array
## which must be >= the number of params N in params0, 
## else: 'TypeError: Improper input parameters.'
iternum = 0
params_init = [ mitral_granule_AMPA_Gbar_init, granule_mitral_GABA_Gbar_init,\
    self_mitral_GABA_Gbar_init, mitB_current_init ]
params = optimize.leastsq( chisq_ADI, params_init,\
    full_output=1, maxfev=100000, epsfcn=1e-3 )
print params # print the status message
params = params[0] # take only fitted params; leastsq returns a tuple with errmsg, etc.
print "mitral_granule_AMPA_Gbar, granule_mitral_GABA_Gbar,"\
    "self_mitral_GABA_Gbar, mitB_current",params
print "Difference between fitted and desired inh reduxes =",chisq_ADI(params)