Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)

 Download zip file 
Help downloading and running models
Accession:153574
A detailed network model of the dual-layer dendro-dendritic inhibitory microcircuits in the rat olfactory bulb comprising compartmental mitral, granule and PG cells developed by Aditya Gilra, Upinder S. Bhalla (2015). All cell morphologies and network connections are in NeuroML v1.8.0. PG and granule cell channels and synapses are also in NeuroML v1.8.0. Mitral cell channels and synapses are in native python.
Reference:
1 . Gilra A, Bhalla US (2015) Bulbar microcircuit model predicts connectivity and roles of interneurons in odor coding. PLoS One 10:e0098045 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I A; I h; I K,Ca; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: Python; MOOSE/PyMOOSE;
Model Concept(s): Sensory processing; Sensory coding; Markov-type model; Olfaction;
Implementer(s): Bhalla, Upinder S [bhalla at ncbs.res.in]; Gilra, Aditya [aditya_gilra -at- yahoo -period- com];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell; AMPA; NMDA; Gaba; I A; I h; I K,Ca; I Sodium; I Calcium; I Potassium; Gaba; Glutamate;
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import os
import sys
import math
import datetime
import pickle

## from node000:
## mpiexec -machinefile ~/hostfile -n <numavgs*numvarinhs+1> ~/Python-2.6.4/bin/python2.6 odor_variedinhibition.py
## nohup mpiexec -machinefile ~/hostfile -n 61 ~/Python-2.6.4/bin/python2.6 odor_variedinhibition.py < /dev/null &
## typical value for numavgs = 10
## (depends on number of available processing nodes and number of odorfiles generated)
## typical value for numvariedinh = 6 (see generate_firerates_variedinhibition.py).
## Set various options like NO_PGs or ONLY_TWO_MITS in simset_odor
## For a single run:
## python2.6 odor_variedinhibition.py

sys.path.extend(["..","../networks","../generators","../simulations"])

from moose_utils import * # imports moose
from data_utils import * # has mpi import and variables also
from OBNetwork import *
from sim_utils import *

from stimuliConstants import * # has SETTLETIME, inputList and pulseList, GLOMS_ODOR, GLOMS_NIL
from simset_odor import * # has REALRUNTIME, NUMBINS

RUNTIME = REALRUNTIME + SETTLETIME

from pylab import * # part of matplotlib that depends on numpy but not scipy
from plot_odor_variedinhibition import *

#-----------------------------------------------------------

class odorResponse:
    
    def __init__(self):
        self.mpirank = mpirank
        self.context = moose.PyMooseBase.getContext()

    def setupStim(self,network,inhnum,avgnum):
        self.setupOdor(network, inhnum, avgnum)        
        print "Setup inhnum =",inhnum,"at",self.mpirank

    def setupOdor(self, network, inhnum, avgnum):
        ## first figure out which PG belongs to which glom
        ## PG_glom_map[pgname] returns the glom num of the PG:
        ## needed for ORN to PG connections.
        PG_glom_map = {}
        for projname in network.projectionDict.keys():
            if 'PG_mitral' in projname:
                for i,proj in enumerate(network.projectionDict[projname][2]):
                    ## get the glomnum from the post path proj[2]
                    ## name of the mitral cell from '/mitrals_2/...'
                    mitname = string.split(proj[2],'/')[1]
                    ## glomerulus number from 'mitrals_2' by integer division i.e. 2/2 = 1
                    glomnum = int(string.split(mitname,'_')[1]) / 2
                    ## name of the PG cell from '/PGs_2/...'
                    pgname = string.split(proj[1],'/')[1]
                    PG_glom_map[pgname] = glomnum
        ## Now connect the ORNs
        for projname in network.projectionDict.keys():
            #### Calling attach_spikes() for each projection,
            #### would reconnect files to the same segment multiple times.
            #### But attach_files_uniquely() checks whether timetable.tableSize is zero or not
            #### i.e. files already attached or not.
            ## connect ORNs to mitrals
            if 'ORN_mitral' in projname:
                print "connecting ORN files to mitrals"
                for i,proj in enumerate(network.projectionDict[projname][2]):
                    ## get the glomnum from the post path proj[2]
                    ## name of the mitral cell from '/mitrals_2/...'
                    mitname = string.split(proj[2],'/')[1]
                    ## glomerulus number from 'mitrals_2' by integer division i.e. 2/2 = 1
                    glomnum = int(string.split(mitname,'_')[1]) / 2
                    filebase = ORNpathINHstr+'firetimes_2sgm_glom_'+str(glomnum)
                    ## same input to glom0, but varied input to other gloms
                    if glomnum==0: thisinhnum = 0
                    else: thisinhnum = inhnum
                    self.attach_files_uniquely(filebase,proj[0],proj[2],thisinhnum,avgnum)
            ## connect ORNs to PG
            if 'ORN_PG' in projname:
                print "connecting ORN files to PGs"
                for i,proj in enumerate(network.projectionDict[projname][2]):
                    pgname = string.split(proj[2],'/')[1] # name of the PG cell from '/PGs_2/...'
                    glomnum = PG_glom_map[pgname]
                    filebase = ORNpathINHstr+'firetimes_2sgm_glom_'+str(glomnum)
                    ## same input to glom0, but varied input to other gloms
                    if glomnum==0: thisinhnum = 0
                    else: thisinhnum = inhnum
                    self.attach_files_uniquely(filebase,proj[0],proj[2],thisinhnum,avgnum)

    def attach_files_uniquely(self,filebase,synname,postsegpath,inhnum,avgnum=None):
        ttpath = postsegpath+'/'+synname+'_tt'
        if self.context.exists(ttpath):
            # timetable already created by networkML reader - just wrap it below.
            tt = moose.TimeTable(ttpath) # post_segment_path+'/'+syn_name+'_tt'
        else:
            ## if timetable was not already created by networkML reader,
            ## it means that the synaptic weights must be zero!
            ## (no extra inhibition - only main inhibition)
            ## hence do not attach spikefiles
            return
        if tt.tableSize != 0: return # if files are already attached, do nothing!
        filebase += '_inhnum'+str(inhnum)
        if avgnum is not None: filebase += '_avgnum'+str(avgnum)
        ## attach_spikes() accesses filenumbers to this segment
        ## from 'fileNumbers' field (of the timetable object in MOOSE)
        ## which is created while reading in networkML.
        attach_spikes(filebase, tt, self.mpirank)

    def run(self,network, binned):
        print "Resetting MOOSE."
        # from moose_utils.py sets clocks and resets
        resetSim(network.context, SIMDT, PLOTDT)
        print "Running at",self.mpirank
        network.context.step(RUNTIME)
        mitral_responses = []
        mitral_responses_binned = []
        self.mitseg_responses = []
        if ONLY_TWO_MITS: mits = [mitralidx, mitralsidekickidx]
        else: mits = range(NUM_GLOMS*MIT_SISTERS)
        ## network.mitralTable is a dictionary.
        for mitnum in mits:
            ## mitralTable is a dict with mitnum as key
            mitral = network.mitralTable[mitnum]
            ## only the last respiration cycle is taken
            if binned: mitral_responses_binned.append(
                plotBins(mitral._vmTableSoma, NUMBINS, RUNTIME,\
                (NUM_RESPS-1)*RESPIRATION+SETTLETIME) )
            ## need to convert to numpy's array(),
            ## else MOOSE table cannot be pickled for mpi4py send()
            mitral_responses.append(array(mitral._vmTableSoma))
            #self.mitseg_responses.append(\
            #    (array(mitral._vmTableSoma),array(mitral._vmTableDend)))
        return (mitral_responses,mitral_responses_binned)

#----------------------------------------------------------------

if __name__ == "__main__":

    #### if only one process is called, plot one odor directly
    if mpisize == 1:
        sim =  odorResponse()
        ## includeProjections gets used only if ONLY_TWO_MITS is True:
        ## Keep below projections to 'second order cells'
        ## i.e. to cells (granules) connected to mits0&1.
        ## The connections between second order cell
        ## and mits0&1 are automatically retained of course.
        ## 'PG' includes 'ORN_PG', 'PG_mitral', 'mitral_PG' and 'SA_PG'
        includeProjections = ['PG','granule_baseline']
        tweaks = build_tweaks(CLUB_MITRALS, NO_SPINE_INH, NO_SINGLES, NO_JOINTS,\
            NO_MULTIS, NO_PGS, ONLY_TWO_MITS, includeProjections, mitralsidekickidx)
        BINNED = False
        ## if not BINNED, save the full mitral Vm-s
        ## and not just their spiketimes by setting spiketable = False below.
        network = OBNetwork(OBNet_file, synchan_activation_correction, tweaks,\
            mpirank, granfilebase, spiketable=BINNED)
        #printNetTree() # from moose_utils.py

        ## monitor those interneurons that are connected to mitral indices 0 and 1
        ## save only spiketimes by setting extras_spikes_only=True
        #extras_spikes_only = True
        #tables = setupTables(network, NO_PGS, NO_SINGLES, NO_JOINTS,\
        #    {'mitrals':[0,1]}, spikes=extras_spikes_only)

        avgnum = 0
        inhnum = 5
        sim.setupStim(network, inhnum, avgnum)
        mitral_responses,mitral_responses_binned = sim.run(network,binned=BINNED)
        #if not extras_spikes_only:
        #    timevec = arange(0.0,RUNTIME+1e-12,PLOTDT)
        #    plot_extras(timevec, tables, NO_PGS, NO_SINGLES, NO_JOINTS)
        #else:
        #    deltabin = RESPIRATION/NUMBINS
        #    ## Only the last respiration cycle
        #    timevec = arange(SETTLETIME+(NUM_RESPS-1)*RESPIRATION+deltabin/2,RUNTIME,deltabin)
        #    plot_extras_spikes(timevec, tables, NO_PGS, NO_SINGLES, NO_JOINTS,\
        #        NUMBINS, RUNTIME, SETTLETIME)
        figure()
        title('mitrals 0 and 2')
        if BINNED:
            deltabin = RESPIRATION/NUMBINS
            # Take only the last respiration cycle
            timevec = arange(SETTLETIME+(NUM_RESPS-1)*RESPIRATION+deltabin/2,RUNTIME,deltabin)
            mitral_responses = mitral_responses_binned
        else:
            timevec = arange(0.0,RUNTIME+1e-12,PLOTDT)
        plot(timevec,mitral_responses[0],color=(1.0,0.0,0.0))
        plot(timevec,mitral_responses[1],color=(0.0,1.0,0.0))
        #figure()
        #title('mitral 2')
        #plot(timevec,sim.mitseg_responses[1][0],color=(1.0,0.0,0.0))
        #plot(timevec,sim.mitseg_responses[1][1],color=(0.0,1.0,0.0))
        show()

    #### if multiple processes are called, average over odor morphs
    else:

        numodors = len(inputList)
        if mpirank == boss:
            #### collate at boss process
            mitral_responses_list = []
            mitral_responses_binned_list = []
            numavgs = (mpisize-1)/NUMINHS
            for avgnum in range(numavgs):
                response_odorset = []
                response_odorset_binned = []
                for inhnum in range(NUMINHS):
                    procnum = avgnum*NUMINHS + inhnum + 1
                    print 'waiting for process '+str(procnum)+'.'
                    ## below: you get a numpy array of 
                    ## rows=NUM_GLOMS*MIT_SISTERS and cols=NUMBINS
                    ## mitral responses has spike times,
                    ## mitral_responses_binned has binned firing rates
                    mitral_responses,mitral_responses_binned = \
                        mpicomm.recv(source=procnum, tag=0)
                    response_odorset.append( mitral_responses )
                    response_odorset_binned.append( mitral_responses_binned )
                mitral_responses_list.append(response_odorset)
                mitral_responses_binned_list.append(response_odorset_binned)
            
            # write results to a file
            today = datetime.date.today()
            if NO_SINGLES: singles_str = '_NOSINGLES'
            else: singles_str = '_SINGLES'
            if NO_JOINTS: joints_str = '_NOJOINTS'
            else: joints_str = '_JOINTS'
            if NO_PGS: pgs_str = '_NOPGS'
            else: pgs_str = '_PGS'
            now =  datetime.datetime.now().strftime("%Y_%m_%d_%H_%M")
            outfilename = '../results/odor_varinh/'+now+'_odorvarinh'+singles_str+\
                joints_str+pgs_str+'_numgloms'+str(NUM_GLOMS)+'.pickle'
            f = open(outfilename,'w')
            pickle.dump((mitral_responses_list,mitral_responses_binned_list), f)
            f.close()
            print "Wrote", outfilename
            
            plot_varinh(outfilename)
            show()

        else:
            #### run the slave processes
            sim =  odorResponse()
            ## includeProjections gets used only if ONLY_TWO_MITS is True:
            ## Keep below projections to 'second order cells'
            ## i.e. to cells (granules) connected to mits0&1.
            ## The connections between second order cell
            ## and mits0&1 are automatically retained of course.
            ## 'PG' includes 'ORN_PG', 'PG_mitral', 'mitral_PG' and 'SA_PG'
            includeProjections = ['PG','granule_baseline']
            tweaks = build_tweaks(CLUB_MITRALS, NO_SPINE_INH, NO_SINGLES, NO_JOINTS,\
                NO_MULTIS, NO_PGS, ONLY_TWO_MITS, includeProjections, mitralsidekickidx)
            network = OBNetwork(OBNet_file, synchan_activation_correction, tweaks,\
                mpirank, granfilebase, spiketable=True)
            #printNetTree() # from moose_utils.py

            avgnum = (mpirank-1)/NUMINHS
            inhnum = (mpirank-1)%NUMINHS
            sim.setupStim(network, inhnum, avgnum)
            mitral_responses_both = sim.run(network, binned=True)
            mpicomm.send( mitral_responses_both, dest=boss, tag=0 )
            print 'sent from process',mpirank