Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018)

 Download zip file 
Help downloading and running models
Accession:237653
We are investigating how dopaminergic modulation of single channels can be combined to make the D1R possitive MSN more excitable. We also connect multiple channels to substrates of a dopamine induced subcellular cascade to highlight that the classical pathway is too slow to explain DA induced kinetics in the subsecond range (Howe and Dombeck, 2016. doi: 10.1038/nature18942)
Reference:
1 . Lindroos R, Dorst MC, Du K, Filipovic M, Keller D, Ketzef M, Kozlov AK, Kumar A, Lindahl M, Nair AG, Pérez-Fernández J, Grillner S, Silberberg G, Hellgren Kotaleski J (2018) Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales-Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Front Neural Circuits 12:3 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Axon; Channel/Receptor; Dendrite; Molecular Network; Synapse; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Basal ganglia; Striatum;
Cell Type(s): Neostriatum medium spiny direct pathway GABA cell; Neostriatum spiny neuron;
Channel(s): I A; I A, slow; I Calcium; I CAN; I K; I K,Ca; I K,leak; I Krp; I Na,t; I Potassium; I R; I T low threshold; Kir;
Gap Junctions:
Receptor(s): D1; Dopaminergic Receptor; AMPA; Gaba; NMDA;
Gene(s):
Transmitter(s): Dopamine; Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Action Potentials; Detailed Neuronal Models; Electrical-chemical; G-protein coupled; Membrane Properties; Neuromodulation; Multiscale; Synaptic noise;
Implementer(s): Lindroos, Robert [robert.lindroos at ki.se]; Du, Kai [kai.du at ki.se]; Keller, Daniel ; Kozlov, Alexander [akozlov at nada.kth.se];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway GABA cell; D1; AMPA; NMDA; Gaba; Dopaminergic Receptor; I Na,t; I T low threshold; I A; I K; I K,leak; I K,Ca; I CAN; I Calcium; I Potassium; I A, slow; I Krp; I R; Kir; Dopamine; Gaba; Glutamate;
TITLE SK-type calcium activated K channel

UNITS {
    (molar) = (1/liter)
    (mV) = (millivolt)
    (mA) = (milliamp)
    (mM) = (millimolar)
}

NEURON {
    SUFFIX sk
    USEION ca READ cai
    USEION k READ ek WRITE ik
    RANGE gbar, ik
}

PARAMETER {
    gbar = 0.0 (mho/cm2)
    q = 1
}

ASSIGNED {
    v (mV)
    ik (mA/cm2)
    cai (mM) 
    ek (mV)
    oinf
    otau (ms)
}

STATE { o }

BREAKPOINT {
    SOLVE state METHOD cnexp
    ik = gbar*o*(v-ek)
}

DERIVATIVE state {
    rate(v, cai)
    o' = (oinf-o)/otau*q
}

INITIAL {
    rate(v, cai)
    o = oinf
}

PROCEDURE rate(v (mV), ca (mM)) {
    LOCAL a
    :ca = ca-(-0.0002) : Lindroos
    a = (ca/0.57e-3)^5.2
    oinf = a/(1+a)
    otau = 4.9
}

COMMENT

Original data by Hirschberg (1998) and Maylie (2004), Xenopus oocytes, room temp.

Genesis implementation by Evans (2013).

Revision by Robert Lindroos <robert.lindroos@ki.se>, Ca conc is shifted by -0.0002.
         done in order to shift the channel into a conducting state.
         similar effect can be obtained by a large increase of the maximal conductance 

NEURON implementation by Alexander Kozlov <akozlov@csc.kth.se>.


ENDCOMMENT