A theory of ongoing activity in V1 (Goldberg et al 2004)

 Download zip file 
Help downloading and running models
Accession:83570
Ongoing spontaneous activity in the cerebral cortex exhibits complex spatiotemporal patterns in the absence of sensory stimuli. To elucidate the nature of this ongoing activity, we present a theoretical treatment of two contrasting scenarios of cortical dynamics: (1) fluctuations about a single background state and (2) wandering among multiple “attractor” states, which encode a single or several stimulus features. Studying simplified network rate models of the primary visual cortex (V1), we show that the single state scenario is characterized by fast and high-dimensional Gaussian-like fluctuations, whereas in the multiple state scenario the fluctuations are slow, low dimensional, and highly non-Gaussian. Studying a more realistic model that incorporates correlations in the feedforward input, spatially restricted cortical interactions, and an experimentally derived layout of pinwheels, we show that recent optical-imaging data of ongoing activity in V1 are consistent with the presence of either a single background state or multiple attractor states encoding many features.
Reference:
1 . Goldberg JA, Rokni U, Sompolinsky H (2004) Patterns of ongoing activity and the functional architecture of the primary visual cortex. Neuron 42:489-500 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Connectionist Network;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: XPPAUT;
Model Concept(s): Spatio-temporal Activity Patterns; Rate-coding model neurons; Olfaction;
Implementer(s): Goldberg, Joshua [JoshG at ekmd.huji.ac.il];
 
/
goldbergEtAl2004
readme.txt
CosIntCol20.tab
NoisyRing.ode
                            
File not selected

<- Select file from this column.