Dentate gyrus granule cell: subthreshold signal processing (Schmidt-Hieber et al. 2007)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:95960
Detailed compartmental cable models of 8 hippocampal granule cells of adult mice were obtained from dual patch-clamp whole-cell recordings and subsequent 3D reconstructions. This code allows to reproduce figures 6-8 from the paper.
Reference:
1 . Schmidt-Hieber C, Jonas P, Bischofberger J (2007) Subthreshold dendritic signal processing and coincidence detection in dentate gyrus granule cells. J Neurosci 27:8430-41 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Dentate gyrus granule GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): AMPA; Glutamate;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Parameter Fitting; Influence of Dendritic Geometry; Synaptic Integration;
Implementer(s): Schmidt-Hieber, Christoph [c.schmidt-hieber at ucl.ac.uk];
Search NeuronDB for information about:  Dentate gyrus granule GLU cell; AMPA; Glutamate; Glutamate;
: AMPA-type synapse, implemented as a point process
: taken from Golding et al. (2005), J. Physiol. 568:69-82
: downloaded from
: http://www.northwestern.edu/neurobiology/faculty/spruston/sk_models/JP_2005/attenuation.htm
: as of 11/14/2006
: date of last revision: 11/14/2006
: C. Schmidt-Hieber, University of Freiburg

COMMENT
synaptic current with exponential rise and decay conductance defined by
        i = g * (v - e)      i(nanoamps), g(micromhos);
        where
         g = 0 for t < onset and
         g=amp*((1-exp(-(t-onset)/tau0))-(1-exp(-(t-onset)/tau1)))
          for t > onset
ENDCOMMENT
					       
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	POINT_PROCESS synampa
	RANGE onset, tau0, tau1, gmax, e, i
	NONSPECIFIC_CURRENT i
}
UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(umho) = (micromho)
}

PARAMETER {
	onset=0  (ms)
	tau0=0.2 (ms)
	tau1=3.0 (ms)
	gmax=0 	 (umho)
	e=0	 (mV)
	v	 (mV)
}

ASSIGNED { i (nA)  g (umho) }

LOCAL   a[2]
LOCAL   tpeak
LOCAL   adjust
LOCAL   amp

BREAKPOINT {
        g = cond(t)
	i = g*(v - e)
}

FUNCTION cond(x) {
	tpeak=tau0*tau1*log(tau0/tau1)/(tau0-tau1)
	adjust=1/((1-exp(-tpeak/tau0))-(1-exp(-tpeak/tau1)))
	amp=adjust*gmax
	if (x < onset) {
		cond = 0
	}else{
		a[0]=1-exp(-(x-onset)/tau0)
		a[1]=1-exp(-(x-onset)/tau1)
		cond = amp*(a[0]-a[1])
	}
}