CA3 pyramidal neuron: firing properties (Hemond et al. 2008)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:101629
In the paper, this model was used to identify how relative differences in K+ conductances, specifically KC, KM, & KD, between cells contribute to the different characteristics of the three types of firing patterns observed experimentally.
Reference:
1 . Hemond P, Epstein D, Boley A, Migliore M, Ascoli GA, Jaffe DB (2008) Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b. Hippocampus 18:411-24 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s): I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I CAN; I Calcium; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Bursting; Active Dendrites; Detailed Neuronal Models; Action Potentials;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I CAN; I Calcium; I Potassium;
/
ca3b
readme.html *
cacumm.mod *
cagk.mod *
cal2.mod *
can2.mod *
cat.mod *
distr.mod *
h.mod *
KahpM95.mod *
kaprox.mod *
kd.mod *
kdrca1.mod *
km.mod *
na3n.mod *
naxn.mod *
ca3b-cell1zr.hoc *
ca3b-cell1zr.ses *
fixnseg.hoc *
geo-cell1zr.hoc *
mosinit.hoc *
screenshot.jpg *
                            
{load_file("nrngui.hoc")}
objectvar save_window_, rvp_
objectvar scene_vector_[3]
objectvar ocbox_, ocbox_list_, scene_, scene_list_
{ocbox_list_ = new List()  scene_list_ = new List()}
{pwman_place(0,0,0)}
{
save_window_ = new Graph(0)
save_window_.size(0,500,-80,40)
scene_vector_[2] = save_window_
{save_window_.view(0, -80, 500, 120, 546, 140, 429.3, 313.3)}
graphList[0].append(save_window_)
save_window_.save_name("graphList[0].")
save_window_.addexpr("v(.5)", 1, 1, 0.8, 0.9, 2)
}
{
xpanel("IClamp[0] at soma[0](0.5)", 0)
xlabel("IClamp[0] at soma[0](0.5)")
stim.del = 50
xvalue("del","stim.del", 1,"", 0, 1 )
stim.dur = 400
xvalue("dur","stim.dur", 1,"", 0, 1 )
stim.amp = 0.6
xvalue("amp","stim.amp", 1,"", 0, 1 )
stim.i = 0
xvalue("i","stim.i", 0,"", 0, 1 )
xpanel(741,619)
}
{
xpanel("", 0)
gc = 1e-05
xvalue("gc","gc", 0,"", 0, 0 )
gKc = 0
xvalue("gKc","gKc", 0,"", 0, 0 )
gahp = 0
xvalue("gahp","gahp", 0,"", 0, 0 )
gna = 0.022
xvalue("gna","gna", 0,"", 0, 0 )
gkdr = 0.01
xvalue("gkdr","gkdr", 0,"", 0, 0 )
KMULTP = 0.02
xvalue("gka","KMULTP", 0,"", 0, 0 )
gkd = 0.0011
xvalue("gkd","gkd", 0,"", 0, 0 )
gkm = 0
xvalue("gkm","gkm", 0,"", 0, 0 )
xpanel(546,620)
}
{
xpanel("figure 9", 0)
xbutton("Fig.9B","fig9b()")
xbutton("Fig.9C","fig9c()")
xbutton("Fig.9D","fig9d()")
xbutton("Fig.9E","fig9e()")
xpanel(992,621)
}
objectvar scene_vector_[1]
{doNotify()}