/*--------------------------------------------------------------------------
Author: Thomas Nowotny
Institute: Institute for Nonlinear Dynamics
University of California San Diego
La Jolla, CA 92093-0402
email to: tnowotny@ucsd.edu
initial version: 2005-08-17
--------------------------------------------------------------------------*/
#ifndef CN_VALNEURON_CC
#define CN_VALNEURON_CC
#include "CN_neuron.cc"
Valneuron::Valneuron(int inlabel, double *the_p= Val_p):
neuron(inlabel, Val_IVARNO, VALNEURON, the_p, Val_PNO)
{
}
Valneuron::Valneuron(int inlabel, tnvector<int> inpos, double *the_p= Val_p):
neuron(inlabel, Val_IVARNO, VALNEURON, inpos, the_p, Val_PNO)
{
}
inline double Valneuron::E(double *x)
{
assert(enabled);
return x[idx];
}
void Valneuron::derivative(double *x, double *dx)
{
Isyn= 0.0;
forall(den_it) {
Isyn+= den_it->c_value()->Isyn(x);
}
// differential eqn for E, the membrane potential
dx[idx]= -(ipower(x[idx+1],3)*x[idx+2]*p[0]*(x[idx]-p[1]) +
ipower(x[idx+3],4)*p[2]*(x[idx]-p[3])+
p[4]*(x[idx]-p[5])+p[6]*(x[idx]-p[7])-Isyn)/p[9];
// diferential eqn for m, the probability for one Na channel activation
// particle
_a= 0.32*(13.0-x[idx]-p[8]) / (exp((13.0-x[idx]-p[8])/4.0)-1.0);
_b= 0.28*(x[idx]+p[8]-40.0)/(exp((x[idx]+p[8]-40.0)/5.0)-1.0);
dx[idx+1]= _a*(1.0-x[idx+1])-_b*x[idx+1];
// differential eqn for h, the probability for the Na channel blocking
// particle to be absent
_a= 0.128*exp((17.0-x[idx]-p[8])/18.0);
_b= 4.0 / (exp((40-x[idx]-p[8])/5.0)+1.0);
dx[idx+2]= _a*(1.0-x[idx+2])-_b*x[idx+2];
// differential eqn for n, the probability for one K channel activation
// particle
_a= .032*(15.0-x[idx]-p[8]) / (exp((15.0-x[idx]-p[8])/5.0)-1.0);
_b= 0.5*exp((10.0-x[idx]-p[8])/40.0);
dx[idx+3]= _a*(1.0-x[idx+3])-_b*x[idx+3];
}
#endif
|