Thalamic neuron: Modeling rhythmic neuronal activity (Meuth et al. 2005)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:121600
The authors use an in vitro cell model of a single acutely isolated thalamic neuron in the NEURON simulation environment to address and discuss questions in an undergraduate course. Topics covered include passive electrical properties, composition of action potentials, trains of action potentials, multicompartment modeling, and research topics. The paper includes detailed instructions on how to run the simulations in the appendix.
Reference:
1 . Meuth P, Meuth SG, Jacobi D, Broicher T, Pape HC, Budde T (2005) Get the rhythm: modeling neuronal activity. J Undergrad Neurosci Educ 4:A1-A11 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Thalamus geniculate nucleus/lateral principal GLU cell;
Channel(s): I Na,t; I L high threshold; I T low threshold; I A; I K; I h;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Bursting; Tutorial/Teaching; Action Potentials;
Implementer(s):
Search NeuronDB for information about:  Thalamus geniculate nucleus/lateral principal GLU cell; I Na,t; I L high threshold; I T low threshold; I A; I K; I h;
/
MeuthEtAl2005_local
model
mechanism
HH.mod *
ia.mod *
ic.mod *
ih.mod *
il.mod *
inap.mod *
it.mod *
leak.mod *
                            
TITLE high threshold calcium current (L-current)

COMMENT
        *********************************************
        reference:      McCormick & Huguenard (1992) 
			J.Neurophysiology 68(4), 1384-1400
        found in:       hippocampal pyramidal cells
        *********************************************
	Assembled for MyFirstNEURON by Arthur Houweling
ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX iL
	USEION ca READ cai,cao WRITE ica
        RANGE pcabar, m_inf, tau_m, ica
}

UNITS {
	(mA)	= (milliamp)
	(mV)	= (millivolt)
	(mM)	= (milli/liter)
        FARADAY = 96480 (coul)
        R       = 8.314 (volt-coul/degC)
}

PARAMETER {
	v			(mV)
	celsius			(degC)
        dt              	(ms)
	cai			(mM)
	cao			(mM)
	pcabar= 0.000276	(cm/s)		
}

STATE {
	m
}

ASSIGNED {
	ica		(mA/cm2)
	tau_m		(ms)
	m_inf 
	tadj
}

BREAKPOINT { 
	SOLVE states :METHOD euler
	ica = pcabar * m*m * ghk(v,cai,cao,2)
}

:DERIVATIVE states {
:       rates(v)
:
:       m'= (m_inf-m) / tau_m 
:}
  
PROCEDURE states() {
        rates(v)

        m= m + (1-exp(-dt/tau_m))*(m_inf-m)
}

UNITSOFF
INITIAL {
	tadj = 3^((celsius-23.5)/10)
	rates(v)
	m = m_inf
}

FUNCTION ghk( v(mV), ci(mM), co(mM), z)  (millicoul/cm3) {
        LOCAL e, w
        w = v * (.001) * z*FARADAY / (R*(celsius+273.16))
        if (fabs(w)>1e-4) 
          { e = w / (exp(w)-1) }
        else
	: denominator is small -> Taylor series
          { e = 1-w/2 }
        ghk = - (.001) * z*FARADAY * (co-ci*exp(w)) * e
}
UNITSOFF

PROCEDURE rates(v(mV)) { LOCAL a,b
	a = 1.6 / (1+ exp(-0.072*(v-5)))
	b = 0.02 * vtrap( -(v-1.31), 5.36)

	tau_m = 1/(a+b) / tadj
	m_inf = 1/(1+exp((v+10)/-10))
}

FUNCTION vtrap(x,c) { 
	: Traps for 0 in denominator of rate equations
        if (fabs(x/c) < 1e-6) {
          vtrap = c + x/2 }
        else {
          vtrap = x / (1-exp(-x/c)) }
}
UNITSON