Hodgkin-Huxley models of different classes of cortical neurons (Pospischil et al. 2008)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:123623
"We review here the development of Hodgkin- Huxley (HH) type models of cerebral cortex and thalamic neurons for network simulations. The intrinsic electrophysiological properties of cortical neurons were analyzed from several preparations, and we selected the four most prominent electrophysiological classes of neurons. These four classes are 'fast spiking', 'regular spiking', 'intrinsically bursting' and 'low-threshold spike' cells. For each class, we fit 'minimal' HH type models to experimental data. ..."
Reference:
1 . Pospischil M, Toledo-Rodriguez M, Monier C, Piwkowska Z, Bal T, Frégnac Y, Markram H, Destexhe A (2008) Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biol Cybern 99:427-41 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Channel/Receptor;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s): I Na,t; I L high threshold; I T low threshold; I K; I M;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Parameter Fitting; Simplified Models;
Implementer(s): Destexhe, Alain [Destexhe at iaf.cnrs-gif.fr];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; I Na,t; I L high threshold; I T low threshold; I K; I M;
/
PospischilEtAl2008
README.html *
cadecay_destexhe.mod *
HH_traub.mod *
IL_gutnick.mod
IM_cortex.mod *
IT_huguenard.mod *
demo_IN_FS.hoc *
demo_PY_IB.hoc *
demo_PY_IBR.hoc *
demo_PY_LTS.hoc *
demo_PY_RS.hoc *
fig5b.jpg *
mosinit.hoc *
rundemo.hoc *
sIN_template *
sPY_template *
sPYb_template *
sPYbr_template *
sPYr_template *
                            
TITLE Cortical M current
:
:   M-current, responsible for the adaptation of firing rate and the 
:   afterhyperpolarization (AHP) of cortical pyramidal cells
:
:   First-order model described by hodgkin-Hyxley like equations.
:   K+ current, activated by depolarization, noninactivating.
:
:   Model taken from Yamada, W.M., Koch, C. and Adams, P.R.  Multiple 
:   channels and calcium dynamics.  In: Methods in Neuronal Modeling, 
:   edited by C. Koch and I. Segev, MIT press, 1989, p 97-134.
:
:   See also: McCormick, D.A., Wang, Z. and Huguenard, J. Neurotransmitter 
:   control of neocortical neuronal activity and excitability. 
:   Cerebral Cortex 3: 387-398, 1993.
:
:   Written by Alain Destexhe, Laval University, 1995
:

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX im
	USEION k READ ek WRITE ik
        RANGE gkbar, m_inf, tau_m
	GLOBAL taumax

}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}


PARAMETER {
	v		(mV)
	celsius = 36    (degC)
	ek		(mV)
	gkbar	= 1e-6	(mho/cm2)
	taumax	= 1000	(ms)		: peak value of tau
}



STATE {
	m
}

ASSIGNED {
	ik	(mA/cm2)
	m_inf
	tau_m	(ms)
	tau_peak	(ms)
	tadj
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	ik = gkbar * m * (v - ek)
}

DERIVATIVE states { 
	evaluate_fct(v)

	m' = (m_inf - m) / tau_m
}

UNITSOFF
INITIAL {
	evaluate_fct(v)
	m = 0
:
:  The Q10 value is assumed to be 2.3
:
        tadj = 2.3 ^ ((celsius-36)/10)
	tau_peak = taumax / tadj
}

PROCEDURE evaluate_fct(v(mV)) {

	m_inf = 1 / ( 1 + exptable(-(v+35)/10) )
	tau_m = tau_peak / ( 3.3 * exptable((v+35)/20) + exptable(-(v+35)/20) )
}
UNITSON


FUNCTION exptable(x) { 
	TABLE  FROM -25 TO 25 WITH 10000

	if ((x > -25) && (x < 25)) {
		exptable = exp(x)
	} else {
		exptable = 0.
	}
}