Hodgkin-Huxley models of different classes of cortical neurons (Pospischil et al. 2008)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:123623
"We review here the development of Hodgkin- Huxley (HH) type models of cerebral cortex and thalamic neurons for network simulations. The intrinsic electrophysiological properties of cortical neurons were analyzed from several preparations, and we selected the four most prominent electrophysiological classes of neurons. These four classes are 'fast spiking', 'regular spiking', 'intrinsically bursting' and 'low-threshold spike' cells. For each class, we fit 'minimal' HH type models to experimental data. ..."
Reference:
1 . Pospischil M, Toledo-Rodriguez M, Monier C, Piwkowska Z, Bal T, Frégnac Y, Markram H, Destexhe A (2008) Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biol Cybern 99:427-41 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Channel/Receptor;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s): I Na,t; I L high threshold; I T low threshold; I K; I M;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Parameter Fitting; Simplified Models;
Implementer(s): Destexhe, Alain [Destexhe at iaf.cnrs-gif.fr];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; I Na,t; I L high threshold; I T low threshold; I K; I M;
/
PospischilEtAl2008
README.html *
cadecay_destexhe.mod *
HH_traub.mod *
IL_gutnick.mod
IM_cortex.mod *
IT_huguenard.mod *
demo_IN_FS.hoc *
demo_PY_IB.hoc *
demo_PY_IBR.hoc *
demo_PY_LTS.hoc *
demo_PY_RS.hoc *
fig5b.jpg *
mosinit.hoc *
rundemo.hoc *
sIN_template *
sPY_template *
sPYb_template *
sPYbr_template *
sPYr_template *
                            
TITLE Fast mechanism for submembranal Ca++ concentration (cai)
:
: Takes into account:
:
:	- increase of cai due to calcium currents
:	- extrusion of calcium with a simple first order equation
:
: This mechanism is compatible with the calcium pump "cad" and has the 
: same name and parameters; however the parameters specific to the pump
: are dummy here.
:
: Parameters:
:
:	- depth: depth of the shell just beneath the membran (in um)
:	- cainf: equilibrium concentration of calcium (2e-4 mM)
:	- taur: time constant of calcium extrusion (must be fast)
:	- kt,kd: dummy parameters
:
: Written by Alain Destexhe, Salk Institute, 1995
:

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX cad
	USEION ca READ ica, cai WRITE cai
	RANGE depth,kt,kd,cainf,taur
}

UNITS {
	(molar) = (1/liter)			: moles do not appear in units
	(mM)	= (millimolar)
	(um)	= (micron)
	(mA)	= (milliamp)
	(msM)	= (ms mM)
}

CONSTANT {
	FARADAY = 96489		(coul)		: moles do not appear in units
:	FARADAY = 96.489	(k-coul)	: moles do not appear in units
}

PARAMETER {
	depth	= .1	(um)		: depth of shell
	taur	= 5	(ms)		: rate of calcium removal
	cainf	= 2e-4	(mM)
	kt	= 0	(mM/ms)		: dummy
	kd	= 0	(mM)		: dummy
}

STATE {
	cai		(mM) 
}

INITIAL {
	cai = cainf
}

ASSIGNED {
	ica		(mA/cm2)
	drive_channel	(mM/ms)
}
	
BREAKPOINT {
	SOLVE state METHOD derivimplicit
}

DERIVATIVE state { 

	drive_channel =  - (10000) * ica / (2 * FARADAY * depth)

	if (drive_channel <= 0.) { drive_channel = 0. }	: cannot pump inward

	cai' = drive_channel + (cainf-cai)/taur
}