Synaptic integration in tuft dendrites of layer 5 pyramidal neurons (Larkum et al. 2009)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:124043
Simulations used in the paper. Voltage responses to current injections in different tuft locations; NMDA and calcium spike generation. Summation of multiple input distribution.
Reference:
1 . Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325:756-60 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I L high threshold; I p,q; I A; I K,leak; I K,Ca; I Sodium;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Synaptic Integration;
Implementer(s): Polsky, Alon [alonpol at tx.technion.ac.il];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; GabaA; AMPA; NMDA; I L high threshold; I p,q; I A; I K,leak; I K,Ca; I Sodium; Gaba; Glutamate;
/
larkumEtAl2009_2
readme.html
ampa.mod
cad2.mod
glutamate.mod *
h.mod *
h2.mod
hh3.mod *
ih.mod
it2.mod *
kap.mod
kca.mod *
kdf.mod
Kdr.mod *
kdr2.mod *
km.mod *
SlowCa.mod *
0.50764
0.55472
070603c2.cll
apic.ses
apical_simulation.hoc
layerV.cll
mosinit.hoc
screenshot1.jpg
screenshot2.jpg
screenshot3.jpg
screenshot4.jpg
screenshot5.jpg
screenshot6.jpg
                            
: Delayed rectifier K+ channel
: from Durstewitz & Gabriel (2006), Cerebral Cortex

NEURON {
	SUFFIX Kdr
	USEION k READ ki, ko WRITE ik
	RANGE gKdrbar, gk
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {
	gKdrbar= 0.0338 (mho/cm2) <0,1e9>
}

ASSIGNED {
	v  (mV)
	ik (mA/cm2)
	gk (mho/cm2)
	ek (mV)
	ki (mM)
	ko (mM)
}

STATE {
	n 
}


INITIAL {
	n = alf(v)/(alf(v)+bet(v))
}

BREAKPOINT {
	SOLVE states METHOD derivimplicit
	gk = gKdrbar*n*n*n*n
	ek = 25*log(ko/ki)
	ik = gk*(v-ek)
}

DERIVATIVE states {
	n' = (1-n)*alf(v)-n*bet(v)
}

UNITSOFF

FUNCTION alf(v(mV)) (/ms) { 
	LOCAL va 
	va=v-13
	if (fabs(va)<1e-04) {
	  alf = -0.018*(-25 - va*0.5)
	}
	else {           
	  alf = -0.018*va/(-1+exp(-va/25))
	}
}

FUNCTION bet(v(mV)) (/ms) { 
	LOCAL vb 
	vb=v-23
	if (fabs(vb)<1e-04) {
	  bet =  0.0054*(12 - vb*0.5)
	} 
	else {
	  bet = 0.0054*vb/(-1+exp(vb/12))
	}
}	

UNITSON