A network model of the vertebrate retina (Publio et al. 2009)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:124063
In this work, we use a minimal conductance-based model of the ON rod pathways in the vertebrate retina to study the effects of electrical synaptic coupling via gap junctions among rods and among AII amacrine cells on the dynamic range of the retina. The model is also used to study the effects of the maximum conductance of rod hyperpolarization activated current Ih on the dynamic range of the retina, allowing a study of the interrelations between this intrinsic membrane parameter with those two retina connectivity characteristics.
Reference:
1 . Publio R, Oliveira RF, Roque AC (2009) A computational study on the role of gap junctions and rod Ih conductance in the enhancement of the dynamic range of the retina. PLoS One 4:e6970 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Retina ganglion GLU cell; Retina photoreceptor cone GLU cell; Retina bipolar GLU cell;
Channel(s):
Gap Junctions: Gap junctions;
Receptor(s):
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Sensory processing;
Implementer(s): Publio, Rodrigo [publio at oist.jp];
Search NeuronDB for information about:  Retina ganglion GLU cell; Retina photoreceptor cone GLU cell; Retina bipolar GLU cell; Glutamate;
/
PublioEtAl2009
README.html
A2hh_k.mod
A2hh_na.mod
Bip_Ca.mod
Bip_Cad.mod
Bip_ih.mod
Bip_Ka.mod
Bip_Kv.mod
Cone_CPR.mod
Cone_ih.mod
Cone_Kv.mod
Ganglion_hh.mod *
gap.mod
IinjLT.mod
IinjLT_cone.mod
IinjLTDim.mod *
Rod_Ca.mod
Rod_Cad.mod
Rod_Clca.mod
Rod_ih.mod
Rod_Kca.mod
Rod_Kv.mod
Rod_Kx.mod
Rod_leak.mod
syn_bip_gan.mod
syn_rod_bip.mod
A2.tem
Bip.tem
Cone.tem
createcells.hoc
Ganglion.tem
gap.hoc *
init.hoc
mosinit.hoc *
netconnection.hoc
parameters.hoc
Rod.tem
screenshot1.jpg
screenshot2.jpg
session.ses
                            
: Cone Photoreceptor Kx h Ca channel

NEURON 
{
	SUFFIX CPR
	
	USEION Ca WRITE iCa VALENCE 2
	USEION Cl WRITE iCl  VALENCE 1
	USEION Kca WRITE iKca VALENCE 1
	
	NONSPECIFIC_CURRENT il, iCGMP
	
	RANGE gCabar, gCa, eCa, SCa, VhalfCa, aoCa
	
             RANGE gClbar,gCl, eCl, SCl
             RANGE gKcabar,gKca, eKca
	
	RANGE gl, el
	RANGE gCGMP, eCGMP
	
	:temporal parameters
	RANGE FactorCaI
	RANGE mCl, Cas
	
	
	

}

UNITS
{
	(mA) = (milliamp)
	(mV) = (millivolt)
	(mS) = (millimho)
	(mol)= (1)
	(M)  = (mol/liter)
	(uM) = (micro M)
}

PARAMETER
{
       
       : Calcium channel 
       gCabar = 4.92 (mS/cm2) <0,1e9>
       eCa =  40 (mV)
       aoCa = 0.0031  (/ms)
       VhalfCa=-16.6 (mV)
       SCa =5.7      (mV)   
   
       
        
       : Cl channel	
       eCl= -45  (mV)
       gClbar = 6.5 (mS/cm2) <0,1e9>
       SCl = 0.09   (uM)                                                     
       Clh = 0.37 (uM)
       FactorCaI = 0.45    
 
       :Ca-dependent K current
       eKca=-80 (mV)
       gKcabar = 0.5 (mS/cm2) 
 
       : leak
        gl=0.01   (mS/cm2)
        el=0 (mV)
	
       : cGMP gated channel	
        gCGMP= 0   (mS/cm2)
	:1.8   (mS/cm2)
        eCGMP=0.8 (mV)
        

}

STATE
{

	nCa
	mKca
	
}

ASSIGNED
{
	v (mV)
	
	iCa (mA/cm2)
	il  (mA/cm2)
             iCl  (mA/cm2)
             iCGMP (mA/cm2) 
             iKca (mA/cm2) 
              
           
           :Ca-dependent potassium channel, Kca
	infmKca
	taumKca  (ms)
	
	infCa
	tauCa  (ms) 
	
	Cas  (uM)
	mCl
	: the paremeter for activation
	
	mKca1
	
	gKca (mho/cm2)
	
	gCa (mho/cm2)
             gCl (mho/cm2)

}

INITIAL
{
	rate(v)
	nCa = infCa
	mKca= infmKca
}




BREAKPOINT
{
	SOLVE states METHOD cnexp
	gCa = (0.001)*gCabar*nCa
	iCa = gCa*(v - eCa)
	
	UNITSOFF
	:if (iCa >= 0) 
	:{
	:	Cas =0
	:}
	:if (iCa < 0) 
	:{
		Cas =-0.2+FactorCaI * (-iCa) * 1 *  0.5         /(1.6e-19)/  (6.023e23) * 1e-6         *1e14    
	:                  mA/cm2 * ms-> n coul/cm2  ->n e /cm2-> nmol/cm2  -> mol /cm2     scale factor
	: all the calculation without consideration of volume
         :    }
                
	
	
	mCl = 1/(1+ exp ( (Clh - Cas)/ SCl  ) ) 
	gCl = (0.001)* gClbar * mCl
	iCl = gCl*(v-eCl)   
	
	mKca1=Cas/(Cas+0.3)
	gKca=(0.001)*gKcabar*mKca*mKca*mKca1
	iKca=gKca*(v-eKca) 
	
	UNITSON
	
	il  = (0.001)*gl*(v-el)
	  
	iCGMP = (0.001)*gCGMP*(v-eCGMP)
	
	
	: the current is in the unit of mA/cm2
	
	
}

DERIVATIVE states
{
	rate(v)
	nCa' = (infCa - nCa)/tauCa
	mKca'= (infmKca - mKca ) /taumKca

}


UNITSOFF


FUNCTION alphamKca(v(mV)) (/ms)
{ 
	alphamKca = (0.001)*15*(80-v)/ ( exp( (80-v)/40 ) -1)
	:alter from orginal settings where it is in the unit of 1/s
}

FUNCTION  betamKca (v(mV)) (/ms)
{
	
	betamKca = (0.001)*20*exp (-v/35)
}



UNITSON


FUNCTION alphaCa(v(mV))(/ms)
{ 
	alphaCa = aoCa*exp( (v - VhalfCa)/(2*SCa)   )
}

FUNCTION betaCa(v(mV))(/ms)
{ 
	betaCa = aoCa*exp( - ( v-VhalfCa)/(2*SCa) )
}


PROCEDURE rate(v (mV))
{
        LOCAL a, b

	
	
	a = alphamKca(v)
	b = betamKca(v)
	taumKca = 1/(a + b)
	infmKca = a/(a + b)
	
	
	
	a = alphaCa(v)
	b = betaCa(v)
	tauCa = 1/(a + b)
	infCa = a/(a + b)

}