Dentate gyrus (Morgan et al. 2007, 2008, Santhakumar et al. 2005, Dyhrfjeld-Johnsen et al. 2007)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:124513
This model was implemented by Rob Morgan in the Soltesz lab at UC Irvine. It is a scaleable model of the rat dentate gyrus including four cell types. This model runs in serial (on a single processor) and has been published at the size of 50,000 granule cells (with proportional numbers of the other cells).
Reference:
1 . Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93:437-53 [PubMed]
2 . Dyhrfjeld-Johnsen J, Santhakumar V, Morgan RJ, Huerta R, Tsimring L, Soltesz I (2007) Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J Neurophysiol 97:1566-87 [PubMed]
3 . Morgan RJ, Soltesz I (2008) Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci U S A 105:6179-84 [PubMed]
4 . Morgan RJ, Santhakumar V, Soltesz I (2007) Modeling the dentate gyrus. Prog Brain Res 163:639-58 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Dentate gyrus;
Cell Type(s): Dentate gyrus granule GLU cell; Dentate gyrus mossy cell; Dentate gyrus basket cell; Dentate gyrus hilar cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Epilepsy;
Implementer(s): Bezaire, Marianne [mariannejcase at gmail.com]; Morgan, Robert [polomav at gmail.com];
Search NeuronDB for information about:  Dentate gyrus granule GLU cell;
Files displayed below are from the implementation
/
dentate_gyrus
500net
README.html
bgka.mod *
CaBK.mod
ccanl.mod *
Gfluct2.mod
gskch.mod *
hyperde3.mod *
ichan2.mod *
inhsyn.mod
LcaMig.mod *
nca.mod
ppsyn.mod
tca.mod *
50knet.hoc
bcdist.hoc
bcell.bcell
bcell.gcell
bcell.hcell *
bcell.mcell
gcdist.hoc
gcell.bcell
gcell.gcell
gcell.hcell
gcell.mcell
hcdist.hoc
hcell.bcell
hcell.gcell
hcell.hcell *
hcell.mcell
mcdist.hoc
mcell.bcell
mcell.gcell
mcell.hcell
mcell.mcell
mosinit.hoc
parameters.dat
pbc.hoc
pgc.hoc
phc.hoc
pmc.hoc
run50knet.bash
screenshot.jpg
                            
TITLE gskch.mod  calcium-activated potassium channel (non-voltage-dependent)

COMMENT

gsk granule

ENDCOMMENT

UNITS {
        (molar) = (1/liter)
        (mM)    = (millimolar)
	(mA)	= (milliamp)
	(mV)	= (millivolt)
}

NEURON {
	SUFFIX gskch
	USEION sk READ esk WRITE isk VALENCE 1
	USEION nca READ ncai VALENCE 2
	USEION lca READ lcai VALENCE 2
	USEION tca READ tcai VALENCE 2
	RANGE gsk, gskbar, qinf, qtau, isk
}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

PARAMETER {
	celsius=6.3 (degC)
	v		(mV)
	dt		(ms)
	gskbar  (mho/cm2)
	esk	(mV)
	cai (mM)
	ncai (mM)
	lcai (mM)
	tcai (mM)
}

STATE { q }

ASSIGNED {
	isk (mA/cm2) gsk (mho/cm2) qinf qtau (ms) qexp
}


BREAKPOINT {          :Computes i=g*q^2*(v-esk)
	SOLVE state
        gsk = gskbar * q*q
	isk = gsk * (v-esk)
}

UNITSOFF

INITIAL {
	cai = ncai + lcai + tcai	
	rate(cai)
	q=qinf
	VERBATIM
	ncai = _ion_ncai;
	lcai = _ion_lcai;
	tcai = _ion_tcai;
	ENDVERBATIM
}


PROCEDURE state() {  :Computes state variable q at current v and dt.
	cai = ncai + lcai + tcai
	rate(cai)
	q = q + (qinf-q) * qexp
	VERBATIM
	return 0;
	ENDVERBATIM
}

LOCAL q10
PROCEDURE rate(cai) {  :Computes rate and other constants at current v.
	LOCAL alpha, beta, tinc
	q10 = 3^((celsius - 6.3)/10)
		:"q" activation system
alpha = 1.25e1 * cai * cai
beta = 0.00025 

:	alpha = 0.00246/exp((12*log10(cai)+28.48)/-4.5)
:	beta = 0.006/exp((12*log10(cai)+60.4)/35)
: alpha = 0.00246/fctrap(cai)
: beta = 0.006/fctrap(cai)
	qtau = 1 / (alpha + beta)
	qinf = alpha * qtau
	tinc = -dt*q10
	qexp = 1 - exp(tinc/qtau)*q10
}

UNITSON