CA1 pyramidal neuron to study INaP properties and repetitive firing (Uebachs et al. 2010)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:125152
A model of a CA1 pyramidal neuron containing a biophysically realistic morphology and 15 distributed voltage and Ca2+-dependent conductances. Repetitive firing is modulated by maximal conductance and the voltage dependence of the persistent Na+ current (INaP).
Reference:
1 . Uebachs M, Opitz T, Royeck M, Dickhof G, Horstmann MT, Isom LL, Beck H (2010) Efficacy loss of the anticonvulsant carbamazepine in mice lacking sodium channel beta subunits via paradoxical effects on persistent sodium currents. J Neurosci 30:8489-501 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I p,q; I A; I K,leak; I M; I K,Ca; I CAN; I Calcium; ATP-senstive potassium current;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; Epilepsy;
Implementer(s): Horstmann, Marie-Therese [mhorstma at uni-bonn.de];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; I Na,p; I Na,t; I p,q; I A; I K,leak; I M; I K,Ca; I CAN; I Calcium; ATP-senstive potassium current;
: from Golomb, Yue, Yaari J. Neurophysiol. 2006

NEURON {
  SUFFIX kaG
  USEION k READ ek WRITE ik
  RANGE gbar, g, i
}

UNITS {
  (S) = (siemens)
  (mV) = (millivolt)
  (mA) = (milliamp)	
}

PARAMETER {
  gbar = 0.0014 (S/cm2)
  btau = 15 (ms)
  atau = 0.5 (ms)
  eK = -95 (S/cm2)
}

ASSIGNED {
  v	(mV)
  ek	(mV)
  ik 	(mA/cm2)
  i 	(mA/cm2)
  g	(S/cm2)
  
 
}

STATE {a b}


BREAKPOINT {
  SOLVE states METHOD cnexp
  g = gbar*a*a*a*b
  i = g*(v-eK)
  ik = i
}
  
INITIAL {
  b = binf(v)
  a = ainf(v)
}

DERIVATIVE states {
 b'= (binf(v)-b)/btau
 a' = (ainf(v)-a)/atau
}

FUNCTION ainf (Vm (mV)) () {

  UNITSOFF
    ainf = 1/(1+exp(-(Vm+50)/20))
  UNITSON

}


FUNCTION binf (Vm (mV)) () {

  UNITSOFF
    binf = 1/(1+exp((Vm+80)/6))
  UNITSON

}