Computer model of clonazepam's effect in thalamic slice (Lytton 1997)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:12631
Demonstration of the effect of a minor pharmacological synaptic change at the network level. Clonazepam, a benzodiazepine, enhances inhibition but is paradoxically useful for certain types of seizures. This simulation shows how inhibition of inhibitory cells (the RE cells) produces this counter-intuitive effect.
Reference:
1 . Lytton WW (1997) Computer model of clonazepam's effect in thalamic slice. Neuroreport 8:3339-43 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Thalamus;
Cell Type(s): Thalamus geniculate nucleus/lateral principal GLU cell; Thalamus reticular nucleus GABA cell;
Channel(s): I Na,t; I T low threshold; I K; I CAN;
Gap Junctions:
Receptor(s): GabaA; Gaba;
Gene(s):
Transmitter(s): Gaba;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Bursting; Therapeutics; Epilepsy; Calcium dynamics;
Implementer(s): Lytton, William [bill.lytton at downstate.edu];
Search NeuronDB for information about:  Thalamus geniculate nucleus/lateral principal GLU cell; Thalamus reticular nucleus GABA cell; GabaA; Gaba; I Na,t; I T low threshold; I K; I CAN; Gaba;
/
lytton97b
README
AMPA.mod
calciumpump_destexhe.mod *
GABAA.mod
GABAB1.mod
GABALOW.mod
HH_traub.mod *
IAHP_destexhe.mod
ICAN_destexhe.mod
ICAN_voltdep.mod
Ih_old.mod *
IT_wang.mod
IT2_huguenard.mod
NMDA.mod
passiv.mod *
pregen.mod *
presyn.mod *
pulse.mod
rand.mod
bg.inc *
boxes.hoc
ctl.dat
ctlnew.dat
czp.dat
czpnew.dat
declist.hoc *
decvec.hoc *
default.hoc *
disp.hoc
Fig3.gif
Fig4.gif
geom.hoc
grvec.hoc
init.hoc
labels.hoc
local.hoc
mod_func.c
mosinit.hoc
network.hoc
neurrep8
nrnoc.hoc
params.hoc
presyn.inc *
queue.inc *
run.hoc
show.hoc
simctrl.hoc *
sns.inc *
snsarr.inc
snscode.hoc
snsgr.hoc
snshead.inc *
synq.inc *
xtmp
                            
: $Id: calciumpump_destexhe.mod,v 1.4 1994/04/14 02:47:41 billl Exp $
TITLE decay of internal calcium concentration
:
: Internal calcium concentration due to calcium currents and pump.
: Differential equations.
:
: Simple model of ATPase pump with 3 kinetic constants (Destexhe 92)
:     Cai + P <-> CaP -> Cao + P  (k1,k2,k3)
: A Michaelis-Menten approximation is assumed, which reduces the complexity
: of the system to 2 parameters: 
:       kt = <tot enzyme concentration> * k3  -> TIME CONSTANT OF THE PUMP
:	kd = k2/k1 (dissociation constant)    -> EQUILIBRIUM CALCIUM VALUE
: The values of these parameters are chosen assuming a high affinity of 
: the pump to calcium and a low transport capacity (cfr. Blaustein, 
: TINS, 11: 438, 1988, and references therein).  
:
: Units checked using "modlunit" -> factor 10000 needed in ca entry
:
: VERSION OF PUMP + DECAY (decay can be viewed as simplified buffering)
:
: All variables are range variables
:
:
: This mechanism was published in:  Destexhe, A. Babloyantz, A. and 
: Sejnowski, TJ.  Ionic mechanisms for intrinsic slow oscillations in
: thalamic relay neurons. Biophys. J. 65: 1538-1552, 1993)
:
: Written by Alain Destexhe, Salk Institute, Nov 12, 1992
:

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX cad
	USEION ca READ ica, cai WRITE cai
	RANGE depth,kt,kd,cainf,taur
}

UNITS {
	(molar) = (1/liter)			: moles do not appear in units
	(mM)	= (millimolar)
	(um)	= (micron)
	(mA)	= (milliamp)
	(msM)	= (ms mM)
}

CONSTANT {
	FARADAY = 96489		(coul)		: moles do not appear in units
:	FARADAY = 96.489	(k-coul)	: moles do not appear in units
}

PARAMETER {
	depth	= .1	(um)		: depth of shell
	taur	= 700	(ms)		: rate of calcium removal
	cainf	= 1e-8	(mM)
	cainit  = 5e-5
	kt	= 1	(mM/ms)		: estimated from k3=.5, tot=.001
	kd	= 5e-4	(mM)		: estimated from k2=250, k1=5e5
}

STATE {
	cai		(mM) 
}

INITIAL {
	cai = cainit
}

ASSIGNED {
	ica		(mA/cm2)
	drive_channel	(mM/ms)
	drive_pump	(mM/ms)
}
	
BREAKPOINT {
	SOLVE state METHOD derivimplicit
}

DERIVATIVE state { 

	drive_channel =  - (10000) * ica / (2 * FARADAY * depth)

	if (drive_channel <= 0.) { drive_channel = 0. }	: cannot pump inward

:	drive_pump = -tot * k3 * cai / (cai + ((k2+k3)/k1) )	: quasistat
	drive_pump = -kt * cai / (cai + kd )		: Michaelis-Menten

	cai' = drive_channel + drive_pump + (cainf-cai)/taur
}