Fast sodium channel gating in mossy fiber axons (Schmidt-Hieber et al. 2010)

 Download zip file   Auto-launch 
Help downloading and running models
"... To study the mechanisms underlying AP initiation in unmyelinated hippocampal mossy fibers of adult mice, we recorded sodium currents in axonal and somatic membrane patches. We demonstrate that sodium channel density in the proximal axon is ~5 times higher than in the soma. Furthermore, sodium channel activation and inactivation are ~2 times faster. Modeling revealed that the fast activation localized the initiation site to the proximal axon even upon strong synaptic stimulation, while fast inactivation contributed to energy-efficient membrane charging during APs. ..."
1 . Schmidt-Hieber C, Bischofberger J (2010) Fast sodium channel gating supports localized and efficient axonal action potential initiation. J Neurosci 30:10233-42 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Dentate gyrus granule GLU cell;
Gap Junctions:
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation;
Search NeuronDB for information about:  Dentate gyrus granule GLU cell;
/* Sets nseg in each section to an odd value
   so that its segments are no longer than 
     d_lambda x the AC length constant
   at frequency freq in that section.

   Be sure to specify your own Ra and cm before calling geom_nseg()

   To understand why this works, 
   and the advantages of using an odd value for nseg,
   see  Hines, M.L. and Carnevale, N.T.
        NEURON: a tool for neuroscientists.
        The Neuroscientist 7:123-135, 2001.

// these are reasonable values for most models
freq = 1000 //original:100     // Hz, frequency at which AC length constant will be computed
d_lambda = 0.1 //original:0.1

func lambda_f() { local i, x1, x2, d1, d2, lam
        if (n3d() < 2) {
                return 1e5*sqrt(diam/(4*PI*$1*Ra*cm))
// above was too inaccurate with large variation in 3d diameter
// so now we use all 3-d points to get a better approximate lambda
        x1 = arc3d(0)
        d1 = diam3d(0)
        lam = 0
        for i=1, n3d()-1 {
                x2 = arc3d(i)
                d2 = diam3d(i)
                lam += (x2 - x1)/sqrt(d1 + d2)
                x1 = x2   d1 = d2
        //  length of the section in units of lambda
        lam *= sqrt(2) * 1e-5*sqrt(4*PI*$1*Ra*cm)

        return L/lam

proc geom_nseg_shared() {
  area(0.5) // make sure diam reflects 3d points
  forall { 
	if (debug_mode) printf("lambda=%g\n",lambda_f(freq))
	nseg = int((L/(d_lambda*lambda_f(freq))+0.9)/2)*2 + 1